4,450 research outputs found

    Spectral-based Graph Convolutional Network for Directed Graphs

    Full text link
    Graph convolutional networks(GCNs) have become the most popular approaches for graph data in these days because of their powerful ability to extract features from graph. GCNs approaches are divided into two categories, spectral-based and spatial-based. As the earliest convolutional networks for graph data, spectral-based GCNs have achieved impressive results in many graph related analytics tasks. However, spectral-based models cannot directly work on directed graphs. In this paper, we propose an improved spectral-based GCN for the directed graph by leveraging redefined Laplacians to improve its propagation model. Our approach can work directly on directed graph data in semi-supervised nodes classification tasks. Experiments on a number of directed graph datasets demonstrate that our approach outperforms the state-of-the-art methods

    Directed Graph Convolutional Network

    Full text link
    Graph Convolutional Networks (GCNs) have been widely used due to their outstanding performance in processing graph-structured data. However, the undirected graphs limit their application scope. In this paper, we extend spectral-based graph convolution to directed graphs by using first- and second-order proximity, which can not only retain the connection properties of the directed graph, but also expand the receptive field of the convolution operation. A new GCN model, called DGCN, is then designed to learn representations on the directed graph, leveraging both the first- and second-order proximity information. We empirically show the fact that GCNs working only with DGCNs can encode more useful information from graph and help achieve better performance when generalized to other models. Moreover, extensive experiments on citation networks and co-purchase datasets demonstrate the superiority of our model against the state-of-the-art methods

    A Comprehensive Survey on Graph Neural Networks

    Full text link
    Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.Comment: Minor revision (updated tables and references

    Dual-Primal Graph Convolutional Networks

    Full text link
    In recent years, there has been a surge of interest in developing deep learning methods for non-Euclidean structured data such as graphs. In this paper, we propose Dual-Primal Graph CNN, a graph convolutional architecture that alternates convolution-like operations on the graph and its dual. Our approach allows to learn both vertex- and edge features and generalizes the previous graph attention (GAT) model. We provide extensive experimental validation showing state-of-the-art results on a variety of tasks tested on established graph benchmarks, including CORA and Citeseer citation networks as well as MovieLens, Flixter, Douban and Yahoo Music graph-guided recommender systems

    A Hybrid Traffic Speed Forecasting Approach Integrating Wavelet Transform and Motif-based Graph Convolutional Recurrent Neural Network

    Full text link
    Traffic forecasting is crucial for urban traffic management and guidance. However, existing methods rarely exploit the time-frequency properties of traffic speed observations, and often neglect the propagation of traffic flows from upstream to downstream road segments. In this paper, we propose a hybrid approach that learns the spatio-temporal dependency in traffic flows and predicts short-term traffic speeds on a road network. Specifically, we employ wavelet transform to decompose raw traffic data into several components with different frequency sub-bands. A Motif-based Graph Convolutional Recurrent Neural Network (Motif-GCRNN) and Auto-Regressive Moving Average (ARMA) are used to train and predict low-frequency components and high-frequency components, respectively. In the Motif-GCRNN framework, we integrate Graph Convolutional Networks (GCNs) with local sub-graph structures - Motifs - to capture the spatial correlations among road segments, and apply Long Short-Term Memory (LSTM) to extract the short-term and periodic patterns in traffic speeds. Experiments on a traffic dataset collected in Chengdu, China, demonstrate that the proposed hybrid method outperforms six state-of-art prediction methods.Comment: 7 pages, IJCAI1

    Graph2Seq: Scalable Learning Dynamics for Graphs

    Full text link
    Neural networks have been shown to be an effective tool for learning algorithms over graph-structured data. However, graph representation techniques---that convert graphs to real-valued vectors for use with neural networks---are still in their infancy. Recent works have proposed several approaches (e.g., graph convolutional networks), but these methods have difficulty scaling and generalizing to graphs with different sizes and shapes. We present Graph2Seq, a new technique that represents vertices of graphs as infinite time-series. By not limiting the representation to a fixed dimension, Graph2Seq scales naturally to graphs of arbitrary sizes and shapes. Graph2Seq is also reversible, allowing full recovery of the graph structure from the sequences. By analyzing a formal computational model for graph representation, we show that an unbounded sequence is necessary for scalability. Our experimental results with Graph2Seq show strong generalization and new state-of-the-art performance on a variety of graph combinatorial optimization problems

    Topology and Prediction Focused Research on Graph Convolutional Neural Networks

    Full text link
    Important advances have been made using convolutional neural network (CNN) approaches to solve complicated problems in areas that rely on grid structured data such as image processing and object classification. Recently, research on graph convolutional neural networks (GCNN) has increased dramatically as researchers try to replicate the success of CNN for graph structured data. Unfortunately, traditional CNN methods are not readily transferable to GCNN, given the irregularity and geometric complexity of graphs. The emerging field of GCNN is further complicated by research papers that differ greatly in their scope, detail, and level of academic sophistication needed by the reader. The present paper provides a review of some basic properties of GCNN. As a guide to the interested reader, recent examples of GCNN research are then grouped according to techniques that attempt to uncover the underlying topology of the graph model and those that seek to generalize traditional CNN methods on graph data to improve prediction of class membership. Discrete Signal Processing on Graphs (DSPg) is used as a theoretical framework to better understand some of the performance gains and limitations of these recent GCNN approaches. A brief discussion of Topology Adaptive Graph Convolutional Networks (TAGCN) is presented as an approach motivated by DSPg and future research directions using this approach are briefly discussed

    Topological based classification of paper domains using graph convolutional networks

    Full text link
    The main approaches for node classification in graphs are information propagation and the association of the class of the node with external information. State of the art methods merge these approaches through Graph Convolutional Networks. We here use the association of topological features of the nodes with their class to predict this class. Moreover, combining topological information with information propagation improves classification accuracy on the standard CiteSeer and Cora paper classification task. Topological features and information propagation produce results almost as good as text-based classification, without no textual or content information. We propose to represent the topology and information propagation through a GCN with the neighboring training node classification as an input and the current node classification as output. Such a formalism outperforms state of the art methods

    Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting

    Full text link
    Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges, we propose to model the traffic flow as a diffusion process on a directed graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic flow. Specifically, DCRNN captures the spatial dependency using bidirectional random walks on the graph, and the temporal dependency using the encoder-decoder architecture with scheduled sampling. We evaluate the framework on two real-world large scale road network traffic datasets and observe consistent improvement of 12% - 15% over state-of-the-art baselines.Comment: Published as a conference paper at ICLR 201

    Topology Adaptive Graph Convolutional Networks

    Full text link
    Spectral graph convolutional neural networks (CNNs) require approximation to the convolution to alleviate the computational complexity, resulting in performance loss. This paper proposes the topology adaptive graph convolutional network (TAGCN), a novel graph convolutional network defined in the vertex domain. We provide a systematic way to design a set of fixed-size learnable filters to perform convolutions on graphs. The topologies of these filters are adaptive to the topology of the graph when they scan the graph to perform convolution. The TAGCN not only inherits the properties of convolutions in CNN for grid-structured data, but it is also consistent with convolution as defined in graph signal processing. Since no approximation to the convolution is needed, TAGCN exhibits better performance than existing spectral CNNs on a number of data sets and is also computationally simpler than other recent methods.Comment: 13 page
    corecore