422,723 research outputs found

    The extremal spectral radii of kk-uniform supertrees

    Full text link
    In this paper, we study some extremal problems of three kinds of spectral radii of kk-uniform hypergraphs (the adjacency spectral radius, the signless Laplacian spectral radius and the incidence QQ-spectral radius). We call a connected and acyclic kk-uniform hypergraph a supertree. We introduce the operation of "moving edges" for hypergraphs, together with the two special cases of this operation: the edge-releasing operation and the total grafting operation. By studying the perturbation of these kinds of spectral radii of hypergraphs under these operations, we prove that for all these three kinds of spectral radii, the hyperstar Sn,k\mathcal{S}_{n,k} attains uniquely the maximum spectral radius among all kk-uniform supertrees on nn vertices. We also determine the unique kk-uniform supertree on nn vertices with the second largest spectral radius (for these three kinds of spectral radii). We also prove that for all these three kinds of spectral radii, the loose path Pn,k\mathcal{P}_{n,k} attains uniquely the minimum spectral radius among all kk-th power hypertrees of nn vertices. Some bounds on the incidence QQ-spectral radius are given. The relation between the incidence QQ-spectral radius and the spectral radius of the matrix product of the incidence matrix and its transpose is discussed

    Topological radicals, V. From algebra to spectral theory

    Full text link
    We introduce and study procedures and constructions in the theory of the joint spectral radius that are related to the spectral theory. In particular we devlop the theory of the scattered radical. Among applications we find some sufficient conditions of continuity of the spectrum and spectral radii of various types, and prove that in GCR C*-algebras the joint spectral radius is continuous on precompact subsets and coincides with the Berger-Wang radius
    corecore