1,141 research outputs found

    Spectral Entropy Feature in Full-Combination Multi-stream for Robust ASR

    Get PDF
    In a recent paper, we reported promising automatic speech recognition results obtained by appending spectral entropy features to PLP features. In the present paper, spectral entropy features are used along with PLP features in the framework of multi-stream combination. In a full-combination multi-stream hidden Markov model/artificial neural network (HMM/ANN) hybrid system, we train a separate multi-layered perceptron (MLP) for PLP features, for spectral entropy features and for both combined by concatenation. The output posteriors from these three MLPs are combined with weights inversely proportional to the entropies of their respective posterior distributions. We show that on the Numbers95 database, this approach yields a significant improvement under both clean and noisy conditions as compared to simply appending the features. Further, in the framework of a Tandem HMM/ANN system, we apply the same inverse entropy weighting to combine the outputs of the MLPs before the softmax non-linearity. Feeding the combined and decorrelated MLP outputs to the HMM gives a 9.2\% relative error reduction as compared to the baseline

    Multi-stream Processing for Noise Robust Speech Recognition

    Get PDF
    In this thesis, the framework of multi-stream combination has been explored to improve the noise robustness of automatic speech recognition (ASR) systems. The central idea of multi-stream ASR is to combine information from several sources to improve the performance of a system. The two important issues of multi-stream systems are which information sources (feature representations) to combine and what importance (weights) be given to each information source. In the framework of hybrid hidden Markov model/artificial neural network (HMM/ANN) and Tandem systems, several weighting strategies are investigated in this thesis to merge the posterior outputs of multi-layered perceptrons (MLPs) trained on different feature representations. The best results were obtained by inverse entropy weighting in which the posterior estimates at the output of the MLPs were weighted by their respective inverse output entropies. In the second part of this thesis, two feature representations have been investigated, namely pitch frequency and spectral entropy features. The pitch frequency feature is used along with perceptual linear prediction (PLP) features in a multi-stream framework. The second feature proposed in this thesis is estimated by applying an entropy function to the normalized spectrum to produce a measure which has been termed spectral entropy. The idea of the spectral entropy feature is extended to multi-band spectral entropy features by dividing the normalized full-band spectrum into sub-bands and estimating the spectral entropy of each sub-band. The proposed multi-band spectral entropy features were observed to be robust in high noise conditions. Subsequently, the idea of embedded training is extended to multi-stream HMM/ANN systems. To evaluate the maximum performance that can be achieved by frame-level weighting, we investigated an ``oracle test''. We also studied the relationship of oracle selection to inverse entropy weighting and proposed an alternative interpretation of the oracle test to analyze the complementarity of streams in multi-stream systems. The techniques investigated in this work gave a significant improvement in performance for clean as well as noisy test conditions

    A detection-based pattern recognition framework and its applications

    Get PDF
    The objective of this dissertation is to present a detection-based pattern recognition framework and demonstrate its applications in automatic speech recognition and broadcast news video story segmentation. Inspired by the studies of modern cognitive psychology and real-world pattern recognition systems, a detection-based pattern recognition framework is proposed to provide an alternative solution for some complicated pattern recognition problems. The primitive features are first detected and the task-specific knowledge hierarchy is constructed level by level; then a variety of heterogeneous information sources are combined together and the high-level context is incorporated as additional information at certain stages. A detection-based framework is a â divide-and-conquerâ design paradigm for pattern recognition problems, which will decompose a conceptually difficult problem into many elementary sub-problems that can be handled directly and reliably. Some information fusion strategies will be employed to integrate the evidence from a lower level to form the evidence at a higher level. Such a fusion procedure continues until reaching the top level. Generally, a detection-based framework has many advantages: (1) more flexibility in both detector design and fusion strategies, as these two parts can be optimized separately; (2) parallel and distributed computational components in primitive feature detection. In such a component-based framework, any primitive component can be replaced by a new one while other components remain unchanged; (3) incremental information integration; (4) high level context information as additional information sources, which can be combined with bottom-up processing at any stage. This dissertation presents the basic principles, criteria, and techniques for detector design and hypothesis verification based on the statistical detection and decision theory. In addition, evidence fusion strategies were investigated in this dissertation. Several novel detection algorithms and evidence fusion methods were proposed and their effectiveness was justified in automatic speech recognition and broadcast news video segmentation system. We believe such a detection-based framework can be employed in more applications in the future.Ph.D.Committee Chair: Lee, Chin-Hui; Committee Member: Clements, Mark; Committee Member: Ghovanloo, Maysam; Committee Member: Romberg, Justin; Committee Member: Yuan, Min

    Multi-stream ASR: Oracle Test and Embedded Training

    Get PDF
    Multi-stream based automatic speech recognition (ASR) systems outperform their single stream counterparts, especially in the case of noisy speech. However, the main issues in multi-stream systems are to know a) Which streams to be combined, and b) How to combine them. In order to address these issues, we have investigated an `Oracle' test, which can tell us whether two streams are complimentary. Moreover, the Oracle test justifies our previously proposed inverse entropy method for weighting various streams. We have carried out experiments on two multi-stream systems and results indicate that in clean speech around 80\% of the time Oracle selected the stream which had the minimum entropy. In this paper, we have also presented an embedded iterative training for multi-stream systems. The results of the recognition experiments on Numbers95 database showed that we can improve the performance significantly by multi-stream iterative training, not only for clean speech but also for various noise conditions

    Articulatory features for conversational speech recognition

    Get PDF

    Robust audiovisual speech recognition using noise-adaptive linear discriminant analysis

    Get PDF
    © 2016 IEEE.Automatic speech recognition (ASR) has become a widespread and convenient mode of human-machine interaction, but it is still not sufficiently reliable when used under highly noisy or reverberant conditions. One option for achieving far greater robustness is to include another modality that is unaffected by acoustic noise, such as video information. Currently the most successful approaches for such audiovisual ASR systems, coupled hidden Markov models (HMMs) and turbo decoding, both allow for slight asynchrony between audio and video features, and significantly improve recognition rates in this way. However, both typically still neglect residual errors in the estimation of audio features, so-called observation uncertainties. This paper compares two strategies for adding these observation uncertainties into the decoder, and shows that significant recognition rate improvements are achievable for both coupled HMMs and turbo decoding

    Spectral Entropy Based Feature for Robust ASR

    Get PDF
    In general, entropy gives us a measure of the number of bits required to represent some information. When applied to probability mass function (PMF), entropy can also be used to measure the ``peakiness'' of a distribution. In this paper, we propose using the entropy of short time Fourier transform spectrum, normalised as PMF, as an additional feature for automatic speech recognition (ASR). It is indeed expected that a peaky spectrum, representation of clear formant structure in the case of voiced sounds, will have low entropy, while a flatter spectrum corresponding to non-speech or noisy regions will have higher entropy. Extending this reasoning further, we introduce the idea of multi-band/multi-resolution entropy feature where we divide the spectrum into equal size sub-bands and compute entropy in each sub-band. The results presented in this paper show that multi-band entropy features used in conjunction with normal cepstral features improve the performance of ASR system

    Multi-resolution Spectral Entropy Based Feature for Robust ASR

    Get PDF
    Recently, entropy measures at different stages of recognition have been used in automatic speech recognition (ASR) task. In a recent paper, we proposed that formant positions of a spectrum can be captured by multi-resolution spectral entropy feature. In this paper, we suggest modifications to the spectral entropy feature extraction approach and compute entropy contribution from each sub-band to the total entropy of the normalized spectrum. Further, we explore the ideas of overlapping sub-bands and the time derivatives of the spectral entropy feature. The modified feature is robust to additive wide-band noise and performs well at low SNRs. In the last, in the frame work of TANDEM, we show that the system using combined entropy and PLP features works better than the baseline PLP feature for additive wide-band noise at different SNRs
    • …
    corecore