33,140 research outputs found

    Learning shape correspondence with anisotropic convolutional neural networks

    Get PDF
    Establishing correspondence between shapes is a fundamental problem in geometry processing, arising in a wide variety of applications. The problem is especially difficult in the setting of non-isometric deformations, as well as in the presence of topological noise and missing parts, mainly due to the limited capability to model such deformations axiomatically. Several recent works showed that invariance to complex shape transformations can be learned from examples. In this paper, we introduce an intrinsic convolutional neural network architecture based on anisotropic diffusion kernels, which we term Anisotropic Convolutional Neural Network (ACNN). In our construction, we generalize convolutions to non-Euclidean domains by constructing a set of oriented anisotropic diffusion kernels, creating in this way a local intrinsic polar representation of the data (`patch'), which is then correlated with a filter. Several cascades of such filters, linear, and non-linear operators are stacked to form a deep neural network whose parameters are learned by minimizing a task-specific cost. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks

    A Fully Convolutional Network for Semantic Labeling of 3D Point Clouds

    Full text link
    When classifying point clouds, a large amount of time is devoted to the process of engineering a reliable set of features which are then passed to a classifier of choice. Generally, such features - usually derived from the 3D-covariance matrix - are computed using the surrounding neighborhood of points. While these features capture local information, the process is usually time-consuming, and requires the application at multiple scales combined with contextual methods in order to adequately describe the diversity of objects within a scene. In this paper we present a 1D-fully convolutional network that consumes terrain-normalized points directly with the corresponding spectral data,if available, to generate point-wise labeling while implicitly learning contextual features in an end-to-end fashion. Our method uses only the 3D-coordinates and three corresponding spectral features for each point. Spectral features may either be extracted from 2D-georeferenced images, as shown here for Light Detection and Ranging (LiDAR) point clouds, or extracted directly for passive-derived point clouds,i.e. from muliple-view imagery. We train our network by splitting the data into square regions, and use a pooling layer that respects the permutation-invariance of the input points. Evaluated using the ISPRS 3D Semantic Labeling Contest, our method scored second place with an overall accuracy of 81.6%. We ranked third place with a mean F1-score of 63.32%, surpassing the F1-score of the method with highest accuracy by 1.69%. In addition to labeling 3D-point clouds, we also show that our method can be easily extended to 2D-semantic segmentation tasks, with promising initial results

    Object Tracking in Hyperspectral Videos with Convolutional Features and Kernelized Correlation Filter

    Full text link
    Target tracking in hyperspectral videos is a new research topic. In this paper, a novel method based on convolutional network and Kernelized Correlation Filter (KCF) framework is presented for tracking objects of interest in hyperspectral videos. We extract a set of normalized three-dimensional cubes from the target region as fixed convolution filters which contain spectral information surrounding a target. The feature maps generated by convolutional operations are combined to form a three-dimensional representation of an object, thereby providing effective encoding of local spectral-spatial information. We show that a simple two-layer convolutional networks is sufficient to learn robust representations without the need of offline training with a large dataset. In the tracking step, KCF is adopted to distinguish targets from neighboring environment. Experimental results demonstrate that the proposed method performs well on sample hyperspectral videos, and outperforms several state-of-the-art methods tested on grayscale and color videos in the same scene.Comment: Accepted by ICSM 201
    corecore