12 research outputs found

    FUSION OF HYPERSPECTRAL AND PANCHROMATIC IMAGES USING SPECTRAL UNMIXING RESULTS

    Get PDF

    The High–Low Arctic boundary: How is it determined and where is it located?

    Full text link
    Geobotanical subdivision of landcover is a baseline for many studies. The High–Low Arctic boundary is considered to be of fundamental natural importance. The wide application of different delimitation schemes in various ecological studies and climatic scenarios raises the following questions: (i) What are the common criteria to define the High and Low Arctic? (ii) Could human impact significantly change the distribution of the delimitation criteria? (iii) Is the widely accepted temperature criterion still relevant given ongoing climate change? and (iv) Could we locate the High–Low Arctic boundary by mapping these criteria derived from modern open remote sensing and climatic data? Researchers rely on common criteria for geobotanical delimitation of the Arctic. Unified circumpolar criteria are based on the structure of vegetation cover and climate, while regional specifics are reflected in the floral composition. However, the published delimitation schemes vary greatly. The disagreement in the location of geobotanical boundaries across the studies manifests in poorly comparable results. While maintaining the common principles of geobotanical subdivision, we derived the boundary between the High and Low Arctic using the most up‐to‐date field data and modern techniques: species distribution modeling, radar, thermal and optical satellite imagery processing, and climatic data analysis. The position of the High–Low Arctic boundary in Western Siberia was clarified and mapped. The new boundary is located 50–100 km further north compared to all the previously presented ones. Long‐term anthropogenic press contributes to a change in the vegetation structure but does not noticeably affect key species ranges. A previously specified climatic criterion for the High–Low Arctic boundary accepted in scientific literature has not coincided with the boundary in Western Siberia for over 70 years. The High–Low Arctic boundary is distinctly reflected in biodiversity distribution. The presented approach is appropriate for accurate mapping of the High–Low Arctic boundary in the circumpolar extent

    Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution

    No full text
    International audienceThe problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote sensing applications. The wide spectral range of such imagery, providing a very high spectral resolution, allows to detect and classify surfaces and chemical elements of the observed image. The main problem of hyperspectral data is the (relatively) low spatial resolution, which can vary from a few to tens of meters. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. For classification, the major problem caused by low spatial resolution are the mixed pixels, i.e., parts of the image where more than one land cover map lie in the same pixel. In this work we propose a method to address the problem of mixed pixels and to obtain a finer spatial resolution of the land cover classification maps. The method exploits the advantages of both soft classification techniques and spectral unmixing algorithms, in order to determine the fractional abundances of the classes at a sub-pixel scale. Spatial regularization by Simulated Annealing is finally performed to spatially locate the obtained classes. Experiments carried out on synthetic real data sets show excellent results both from a qualitative and quantitative point of view
    corecore