204 research outputs found

    Asynchronous Gossip for Averaging and Spectral Ranking

    Full text link
    We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.Comment: 14 pages, 7 figures. Minor revisio

    Spectral Ranking in Complex Networks Using Memristor Crossbars

    Get PDF
    Various centrality measures have been proposed to identify the influence of each node in a complex network. Among the most popular ranking metrics, spectral measures stand out from the crowd. They rely on the computation of the dominant eigenvector of suitable matrices related to the graph: EigenCentrality, PageRank, Hyperlink Induced Topic Search (HITS) and Stochastic Approach for Link-Structure Analysis (SALSA). The simplest algorithm used to solve this linear algebra computation is the Power Method. It consists of multiple Matrix-Vector Multiplications (MVMs) and a normalization step to avoid divergent behaviours. In this work, we present an analog circuit used to accelerate the Power Iteration algorithm including current-mode termination for the memristor crossbars and a normalization circuit. The normalization step together with the feedback loop of the complete circuit ensure stability and convergence of the dominant eigenvector. We implement a transistor level peripheral circuitry around the memristor crossbar and take non-idealities such as wire parasitics, source driver resistance and finite memristor precision into account. We compute the different spectral centralities to demonstrate the performance of the system. We compare our results to the ones coming from the conventional digital computers and observe significant energy savings while maintaining a competitive accuracy

    Spectral Ranking Inferences based on General Multiway Comparisons

    Full text link
    This paper studies the performance of the spectral method in the estimation and uncertainty quantification of the unobserved preference scores of compared entities in a very general and more realistic setup in which the comparison graph consists of hyper-edges of possible heterogeneous sizes and the number of comparisons can be as low as one for a given hyper-edge. Such a setting is pervasive in real applications, circumventing the need to specify the graph randomness and the restrictive homogeneous sampling assumption imposed in the commonly-used Bradley-Terry-Luce (BTL) or Plackett-Luce (PL) models. Furthermore, in the scenarios when the BTL or PL models are appropriate, we unravel the relationship between the spectral estimator and the Maximum Likelihood Estimator (MLE). We discover that a two-step spectral method, where we apply the optimal weighting estimated from the equal weighting vanilla spectral method, can achieve the same asymptotic efficiency as the MLE. Given the asymptotic distributions of the estimated preference scores, we also introduce a comprehensive framework to carry out both one-sample and two-sample ranking inferences, applicable to both fixed and random graph settings. It is noteworthy that it is the first time effective two-sample rank testing methods are proposed. Finally, we substantiate our findings via comprehensive numerical simulations and subsequently apply our developed methodologies to perform statistical inferences on statistics journals and movie rankings

    Approximating Spectral Impact of Structural Perturbations in Large Networks

    Full text link
    Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ranking subgraphs of real complex networks.Comment: 9 pages, 3 figures, 2 table
    corecore