64,438 research outputs found
Video-rate computational heterodyne holography
We present a versatile computational image rendering software of
optically-acquired holograms. The reported software can process 4 Megapixel
8-bit raw frames from a sensor array acquired at a sustained rate of 80 Hz.
Video-rate image rendering is achieved by streamline image processing with
commodity computer graphics hardware. For time-averaged holograms acquired in
off-axis optical configuration with a frequency-shifted reference beam,
wide-field imaging of one tunable spectral component is permitted. This
software is validated by phase-stepped hologram rendering, and non-contact
monitoring of surface acoustic waves by single and dual sideband hologram
rendering. It demonstrates the suitability of holography for video-rate
computational laser Doppler imaging in heterodyne optical configuration
A spectral analysis for light field rendering
Image based rendering using the plenoptic function is an efficient technique for re-rendering at different viewpoints. In this paper, we study the sampling and reconstruction problem of plenoptic function as a multidimensional sampling problem. The spectral support of plenoptic function is found to be an important quantity in the efficient sampling and reconstruction of such function. A spectral analysis for the light field, a 4D plenoptic function, is performed. Its spectrum, as a function of the depth function of the scene, is then derived. This result enables us to estimate the spectral support of the light field given some prior estimate of the depth function. Results using a piecewise constant depth model show significant improvement in rendering of the light field images. The design of the reconstruction filter is also discussed.published_or_final_versio
A spectral analysis for light field rendering
Image based rendering using the plenoptic function is an efficient technique for re-rendering at different viewpoints. In this paper, we study the sampling and reconstruction problem of plenoptic function as a multidimensional sampling problem. The spectral support of plenoptic function is found to be an important quantity in the efficient sampling and reconstruction of such function. A spectral analysis for the light field, a 4D plenoptic function, is performed. Its spectrum, as a function of the depth function of the scene, is then derived. This result enables us to estimate the spectral support of the light field given some prior estimate of the depth function. Results using a piecewise constant depth model show significant improvement in rendering of the light field images. The design of the reconstruction filter is also discussed.published_or_final_versio
Interactive Visualization of the Largest Radioastronomy Cubes
3D visualization is an important data analysis and knowledge discovery tool,
however, interactive visualization of large 3D astronomical datasets poses a
challenge for many existing data visualization packages. We present a solution
to interactively visualize larger-than-memory 3D astronomical data cubes by
utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the
data volume into smaller sub-volumes that are distributed over the rendering
workstations. A GPU-based ray casting volume rendering is performed to generate
images for each sub-volume, which are composited to generate the whole volume
output, and returned to the user. Datasets including the HI Parkes All Sky
Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky Survey (GASS - 26
GB) data cubes were used to demonstrate our framework's performance. The
framework can render the GASS data cube with a maximum render time < 0.3 second
with 1024 x 1024 pixels output resolution using 3 rendering workstations and 8
GPUs. Our framework will scale to visualize larger datasets, even of Terabyte
order, if proper hardware infrastructure is available.Comment: 15 pages, 12 figures, Accepted New Astronomy July 201
Shape: A 3D Modeling Tool for Astrophysics
We present a flexible interactive 3D morpho-kinematical modeling application
for astrophysics. Compared to other systems, our application reduces the
restrictions on the physical assumptions, data type and amount that is required
for a reconstruction of an object's morphology. It is one of the first publicly
available tools to apply interactive graphics to astrophysical modeling. The
tool allows astrophysicists to provide a-priori knowledge about the object by
interactively defining 3D structural elements. By direct comparison of model
prediction with observational data, model parameters can then be automatically
optimized to fit the observation. The tool has already been successfully used
in a number of astrophysical research projects.Comment: 13 pages, 11 figures, accepted for publication in the "IEEE
Transactions on Visualization and Computer Graphics
The Iray Light Transport Simulation and Rendering System
While ray tracing has become increasingly common and path tracing is well
understood by now, a major challenge lies in crafting an easy-to-use and
efficient system implementing these technologies. Following a purely
physically-based paradigm while still allowing for artistic workflows, the Iray
light transport simulation and rendering system allows for rendering complex
scenes by the push of a button and thus makes accurate light transport
simulation widely available. In this document we discuss the challenges and
implementation choices that follow from our primary design decisions,
demonstrating that such a rendering system can be made a practical, scalable,
and efficient real-world application that has been adopted by various companies
across many fields and is in use by many industry professionals today
The development of local solar irradiance for outdoor computer graphics rendering
Atmospheric effects are approximated by solving the light transfer equation, LTE, of a given viewing path. The resulting accumulated spectral energy (its visible band) arriving at the observer’s eyes, defines the colour of the object currently on the line of sight. Due to the convenience of using a single rendering equation to solve the LTE for daylight sky and distant objects (aerial perspective), recent methods had opt for a similar kind of approach. Alas, the burden that the real-time calculation brings to the foil had forced these methods to make simplifications that were not in line with the actual world observation. Consequently, the results of these methods are laden with visual-errors. The two most common simplifications made were: i) assuming the atmosphere as a full-scattering medium only and ii) assuming a single density atmosphere profile. This research explored the possibility of replacing the real-time calculation involved in solving the LTE with an analytical-based approach. Hence, the two simplifications made by the previous real-time methods can be avoided. The model was implemented on top of a flight simulator prototype system since the requirements of such system match the objectives of this study. Results were verified against the actual images of the daylight skies. Comparison was also made with the previous methods’ results to showcase the proposed model strengths and advantages over its peers
A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics
This paper presents a survey of ocean simulation and rendering methods in
computer graphics. To model and animate the ocean's surface, these methods
mainly rely on two main approaches: on the one hand, those which approximate
ocean dynamics with parametric, spectral or hybrid models and use empirical
laws from oceanographic research. We will see that this type of methods
essentially allows the simulation of ocean scenes in the deep water domain,
without breaking waves. On the other hand, physically-based methods use
Navier-Stokes Equations (NSE) to represent breaking waves and more generally
ocean surface near the shore. We also describe ocean rendering methods in
computer graphics, with a special interest in the simulation of phenomena such
as foam and spray, and light's interaction with the ocean surface
- …
