96 research outputs found

    Median K-flats for hybrid linear modeling with many outliers

    Full text link
    We describe the Median K-Flats (MKF) algorithm, a simple online method for hybrid linear modeling, i.e., for approximating data by a mixture of flats. This algorithm simultaneously partitions the data into clusters while finding their corresponding best approximating l1 d-flats, so that the cumulative l1 error is minimized. The current implementation restricts d-flats to be d-dimensional linear subspaces. It requires a negligible amount of storage, and its complexity, when modeling data consisting of N points in D-dimensional Euclidean space with K d-dimensional linear subspaces, is of order O(n K d D+n d^2 D), where n is the number of iterations required for convergence (empirically on the order of 10^4). Since it is an online algorithm, data can be supplied to it incrementally and it can incrementally produce the corresponding output. The performance of the algorithm is carefully evaluated using synthetic and real data

    Randomized hybrid linear modeling by local best-fit flats

    Full text link
    The hybrid linear modeling problem is to identify a set of d-dimensional affine sets in a D-dimensional Euclidean space. It arises, for example, in object tracking and structure from motion. The hybrid linear model can be considered as the second simplest (behind linear) manifold model of data. In this paper we will present a very simple geometric method for hybrid linear modeling based on selecting a set of local best fit flats that minimize a global l1 error measure. The size of the local neighborhoods is determined automatically by the Jones' l2 beta numbers; it is proven under certain geometric conditions that good local neighborhoods exist and are found by our method. We also demonstrate how to use this algorithm for fast determination of the number of affine subspaces. We give extensive experimental evidence demonstrating the state of the art accuracy and speed of the algorithm on synthetic and real hybrid linear data.Comment: To appear in the proceedings of CVPR 201

    Kernel Spectral Curvature Clustering (KSCC)

    Full text link
    Multi-manifold modeling is increasingly used in segmentation and data representation tasks in computer vision and related fields. While the general problem, modeling data by mixtures of manifolds, is very challenging, several approaches exist for modeling data by mixtures of affine subspaces (which is often referred to as hybrid linear modeling). We translate some important instances of multi-manifold modeling to hybrid linear modeling in embedded spaces, without explicitly performing the embedding but applying the kernel trick. The resulting algorithm, Kernel Spectral Curvature Clustering, uses kernels at two levels - both as an implicit embedding method to linearize nonflat manifolds and as a principled method to convert a multiway affinity problem into a spectral clustering one. We demonstrate the effectiveness of the method by comparing it with other state-of-the-art methods on both synthetic data and a real-world problem of segmenting multiple motions from two perspective camera views.Comment: accepted to 2009 ICCV Workshop on Dynamical Visio

    Robust Recovery of Subspace Structures by Low-Rank Representation

    Full text link
    In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method termed Low-Rank Representation (LRR), which seeks the lowest-rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that LRR well solves the subspace recovery problem: when the data is clean, we prove that LRR exactly captures the true subspace structures; for the data contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for the data corrupted by arbitrary errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace segmentation and error correction, in an efficient way.Comment: IEEE Trans. Pattern Analysis and Machine Intelligenc

    Least squares approximations of measures via geometric condition numbers

    Full text link
    For a probability measure on a real separable Hilbert space, we are interested in "volume-based" approximations of the d-dimensional least squares error of it, i.e., least squares error with respect to a best fit d-dimensional affine subspace. Such approximations are given by averaging real-valued multivariate functions which are typically scalings of squared (d+1)-volumes of (d+1)-simplices. Specifically, we show that such averages are comparable to the square of the d-dimensional least squares error of that measure, where the comparison depends on a simple quantitative geometric property of it. This result is a higher dimensional generalization of the elementary fact that the double integral of the squared distances between points is proportional to the variance of measure. We relate our work to two recent algorithms, one for clustering affine subspaces and the other for Monte-Carlo SVD based on volume sampling

    Subspace Clustering via Optimal Direction Search

    Full text link
    This letter presents a new spectral-clustering-based approach to the subspace clustering problem. Underpinning the proposed method is a convex program for optimal direction search, which for each data point d finds an optimal direction in the span of the data that has minimum projection on the other data points and non-vanishing projection on d. The obtained directions are subsequently leveraged to identify a neighborhood set for each data point. An alternating direction method of multipliers framework is provided to efficiently solve for the optimal directions. The proposed method is shown to notably outperform the existing subspace clustering methods, particularly for unwieldy scenarios involving high levels of noise and close subspaces, and yields the state-of-the-art results for the problem of face clustering using subspace segmentation
    corecore