959 research outputs found

    Spectral Analysis of TCP Flows for Defense Against Reduction-of-Quality Attacks

    Full text link
    rate DDoS attacks that degrade the QoS to end systems stealthily but not to deny the services completely. These attacks are more difficult to detect than the flooding DDoS attacks. This paper explores the energy distributions of Internet traffic flows in frequency domain. Normal TCP traffic flows present periodicity because of protocol behavior. Our results reveal that normal TCP flows can be segregated from malicious flows according to energy distribution properties. We discover the spectral shifting of attack flows from that of normal flows. Combining flow-level spectral analysis with sequential hypothesis testing, we propose a novel defense scheme against RoQ attacks. Our detection and filtering scheme can effectively rescue 99 % legitimate TCP flows under the RoQ attacks

    Filtering of shrew DDoS attacks in frequency domain

    Get PDF
    The shrew Distributed Denial of Service (DDoS) attacks are periodic, bursty, and stealthy in nature. They are also known as Reduction of Quality (RoQ) attacks. Such attacks could be even more detrimental than the widely known flooding DDoS attacks because they damage the victim servers for a long time without being noticed, thereby denying new visitors to the victim servers, which are mostly e-commerce sites. Thus, In order to minimize the huge monetary losses, there is a pressing need to effectively detect such attacks in real-time. Unfortunately, effective detection of shrew attacks remains an open problem. In this paper, we meet this challenge by proposing a new signal processing approach to identifying and detecting the attacks by examining the frequency-domain characteristics of incoming traffic flows to a server. A major strength of our proposed technique is that its detection time is less than a few seconds. Furthermore, the technique entails simple software or hardware implementations, making it easily deployable in a real-life network environment. © 2005 IEEE.published_or_final_versio

    Discriminating DDoS flows from flash crowds using information distance

    Full text link
    Discriminating DDoS flooding attacks from flash crowds poses a tough challenge for the network security community. Because of the vulnerability of the original design of the Internet, attackers can easily mimic the patterns of legitimate network traffic to fly under the radar. The existing fingerprint or feature based algorithms are incapable to detect new attack strategies. In this paper, we aim to differentiate DDoS attack flows from flash crowds. We are motivated by the following fact: the attack flows are generated by the same prebuilt program (attack tools), however, flash crowds come from randomly distributed users all over the Internet. Therefore, the flow similarity among DDoS attack flows is much stronger than that among flash crowds. We employ abstract distance metrics, the Jeffrey distance, the Sibson distance, and the Hellinger distance to measure the similarity among flows to achieve our goal. We compared the three metrics and found that the Sibson distance is the most suitable one for our purpose. We apply our algorithm to the real datasets and the results indicate that the proposed algorithm can differentiate them with an accuracy around 65%.<br /

    On modeling and mitigating new breed of dos attacks

    Get PDF
    Denial of Service (DoS) attacks pose serious threats to the Internet, exerting in tremendous impact on our daily lives that are heavily dependent on the good health of the Internet. This dissertation aims to achieve two objectives:1) to model new possibilities of the low rate DoS attacks; 2) to develop effective mitigation mechanisms to counter the threat from low rate DoS attacks. A new stealthy DDoS attack model referred to as the quiet attack is proposed in this dissertation. The attack traffic consists of TCP traffic only. Widely used botnets in today\u27s various attacks and newly introduced network feedback control are integral part of the quiet attack model. The quiet attack shows that short-lived TCP flows used as attack flows can be intentionally misused. This dissertation proposes another attack model referred to as the perfect storm which uses a combination of UDP and TCP. Better CAPTCHAs are highlighted as current defense against botnets to mitigate the quiet attack and the perfect storm. A novel time domain technique is proposed that relies on the time difference between subsequent packets of each flow to detect periodicity of the low rate DoS attack flow. An attacker can easily use different IP address spoofing techniques or botnets to launch a low rate DoS attack and fool the detection system. To mitigate such a threat, this dissertation proposes a second detection algorithm that detects the sudden increase in the traffic load of all the expired flows within a short period. In a network rate DoS attacks, it is shown that the traffic load of all the expired flows is less than certain thresholds, which are derived from real Internet traffic analysis. A novel filtering scheme is proposed to drop the low rate DoS attack packets. The simulation results confirm attack mitigation by using proposed technique. Future research directions will be briefly discussed

    On mitigating distributed denial of service attacks

    Get PDF
    Denial of service (DoS) attacks and distributed denial of service (DDoS) attacks are probably the most ferocious threats in the Internet, resulting in tremendous economic and social implications/impacts on our daily lives that are increasingly depending on the wellbeing of the Internet. How to mitigate these attacks effectively and efficiently has become an active research area. The critical issues here include 1) IP spoofing, i.e., forged source lIP addresses are routinely employed to conceal the identities of the attack sources and deter the efforts of detection, defense, and tracing; 2) the distributed nature, that is, hundreds or thousands of compromised hosts are orchestrated to attack the victim synchronously. Other related issues are scalability, lack of incentives to deploy a new scheme, and the effectiveness under partial deployment. This dissertation investigates and proposes effective schemes to mitigate DDoS attacks. It is comprised of three parts. The first part introduces the classification of DDoS attacks and the evaluation of previous schemes. The second part presents the proposed IP traceback scheme, namely, autonomous system-based edge marking (ASEM). ASEM enhances probabilistic packet marking (PPM) in several aspects: (1) ASEM is capable of addressing large-scale DDoS attacks efficiently; (2) ASEM is capable of handling spoofed marking from the attacker and spurious marking incurred by subverted routers, which is a unique and critical feature; (3) ASEM can significantly reduce the number of marked packets required for path reconstruction and suppress false positives as well. The third part presents the proposed DDoS defense mechanisms, including the four-color-theorem based path marking, and a comprehensive framework for DDoS defense. The salient features of the framework include (1) it is designed to tackle a wide spectrum of DDoS attacks rather than a specified one, and (2) it can differentiate malicious traffic from normal ones. The receiver-center design avoids several related issues such as scalability, and lack of incentives to deploy a new scheme. Finally, conclusions are drawn and future works are discussed

    ADVANCED RANDOM TIME QUEUE BLOCKING WITH TRAFFIC PREDICTION FOR DEFENSE OF LOW-RATE DOS ATTACKS AGAINST APPLICATION SERVERS

    Get PDF
    Among many strategies of Denial of Services, low-rate traffic denial-of-service (DoS) attacks are more significant. This strategy denies the services of a network by detection of the vulnerabilities in performance of the application. In this research, an efficient defence methodology is developed against low-rate DoS attack in the application servers. Though, the Improved Random Time Queue Blocking (IRTQB) technique can eliminate the vulnerabilities in the network and also avoiding the attacker from capturing all the server queue positions by defining a spatial similarity metric (SSM). However, the differentiation of the attack requests from the legitimate users’ is not always efficient since only the source IP addresses and the record timestamp are considered in the SSM. It was improved by using Advanced Random Time Queue Blocking (ARTQB) scheme that employed Bandwidth utilization of attacker in IRTQB to detect the DoS attack that normally consumes a huge number of resources of the server. However, this method becomes ineffective when the attack consumes more network traffic. In this paper, an efficient detection technique called Advanced Random Time Queue Blocking with Traffic Prediction (ARTQB-TP) is proposed for defining SSM which contains, Source IP, timestamp, Bandwidth between two requests and the difference between the attack traffic and legitimate traffic. The ARTQB-TP technique is utilized to reduce the attack efficiency in 18 different server configurations which are more vulnerable to the DoS attacks and where the attacks may also have a chance to improve its effectiveness. Experimental results show that the proposed system performs better protection of application servers against the LRDoS attacks by solving its impacts on any kind of server architectures and reduced the attack efficiencies of all the types of attack strategies
    • 

    corecore