23 research outputs found

    Program Repair by Stepwise Correctness Enhancement

    Full text link
    Relative correctness is the property of a program to be more-correct than another with respect to a given specification. Whereas the traditional definition of (absolute) correctness divides candidate program into two classes (correct, and incorrect), relative correctness arranges candidate programs on the richer structure of a partial ordering. In other venues we discuss the impact of relative correctness on program derivation, and on program verification. In this paper, we discuss the impact of relative correctness on program testing; specifically, we argue that when we remove a fault from a program, we ought to test the new program for relative correctness over the old program, rather than for absolute correctness. We present analytical arguments to support our position, as well as an empirical argument in the form of a small program whose faults are removed in a stepwise manner as its relative correctness rises with each fault removal until we obtain a correct program.Comment: In Proceedings PrePost 2016, arXiv:1605.0809

    Tortoise: Interactive System Configuration Repair

    Full text link
    System configuration languages provide powerful abstractions that simplify managing large-scale, networked systems. Thousands of organizations now use configuration languages, such as Puppet. However, specifications written in configuration languages can have bugs and the shell remains the simplest way to debug a misconfigured system. Unfortunately, it is unsafe to use the shell to fix problems when a system configuration language is in use: a fix applied from the shell may cause the system to drift from the state specified by the configuration language. Thus, despite their advantages, configuration languages force system administrators to give up the simplicity and familiarity of the shell. This paper presents a synthesis-based technique that allows administrators to use configuration languages and the shell in harmony. Administrators can fix errors using the shell and the technique automatically repairs the higher-level specification written in the configuration language. The approach (1) produces repairs that are consistent with the fix made using the shell; (2) produces repairs that are maintainable by minimizing edits made to the original specification; (3) ranks and presents multiple repairs when relevant; and (4) supports all shells the administrator may wish to use. We implement our technique for Puppet, a widely used system configuration language, and evaluate it on a suite of benchmarks under 42 repair scenarios. The top-ranked repair is selected by humans 76% of the time and the human-equivalent repair is ranked 1.31 on average.Comment: Published version in proceedings of IEEE/ACM International Conference on Automated Software Engineering (ASE) 201

    MintHint: Automated Synthesis of Repair Hints

    Full text link
    Being able to automatically repair programs is an extremely challenging task. In this paper, we present MintHint, a novel technique for program repair that is a departure from most of today's approaches. Instead of trying to fully automate program repair, which is often an unachievable goal, MintHint performs statistical correlation analysis to identify expressions that are likely to occur in the repaired code and generates, using pattern-matching based synthesis, repair hints from these expressions. Intuitively, these hints suggest how to rectify a faulty statement and help developers find a complete, actual repair. MintHint can address a variety of common faults, including incorrect, spurious, and missing expressions. We present a user study that shows that developers' productivity can improve manyfold with the use of repair hints generated by MintHint -- compared to having only traditional fault localization information. We also apply MintHint to several faults of a widely used Unix utility program to further assess the effectiveness of the approach. Our results show that MintHint performs well even in situations where (1) the repair space searched does not contain the exact repair, and (2) the operational specification obtained from the test cases for repair is incomplete or even imprecise

    Connecting Program Synthesis and Reachability: Automatic Program Repair using Test-Input Generation

    Get PDF
    We prove that certain formulations of program synthesis and reachability are equivalent. Specifically, our constructive proof shows the reductions between the template-based synthesis problem, which generates a program in a pre-specified form, and the reachability problem, which decides the reachability of a program location. This establishes a link between the two research fields and allows for the transfer of techniques and results between them. To demonstrate the equivalence, we develop a program repair prototype using reachability tools. We transform a buggy program and its required specification into a specific program containing a location reachable only when the original program can be repaired, and then apply an off-the-shelf test-input generation tool on the transformed program to find test values to reach the desired location. Those test values correspond to repairs for the original program. Preliminary results suggest that our approach compares favorably to other repair methods

    Automated Fixing of Programs with Contracts

    Full text link
    This paper describes AutoFix, an automatic debugging technique that can fix faults in general-purpose software. To provide high-quality fix suggestions and to enable automation of the whole debugging process, AutoFix relies on the presence of simple specification elements in the form of contracts (such as pre- and postconditions). Using contracts enhances the precision of dynamic analysis techniques for fault detection and localization, and for validating fixes. The only required user input to the AutoFix supporting tool is then a faulty program annotated with contracts; the tool produces a collection of validated fixes for the fault ranked according to an estimate of their suitability. In an extensive experimental evaluation, we applied AutoFix to over 200 faults in four code bases of different maturity and quality (of implementation and of contracts). AutoFix successfully fixed 42% of the faults, producing, in the majority of cases, corrections of quality comparable to those competent programmers would write; the used computational resources were modest, with an average time per fix below 20 minutes on commodity hardware. These figures compare favorably to the state of the art in automated program fixing, and demonstrate that the AutoFix approach is successfully applicable to reduce the debugging burden in real-world scenarios.Comment: Minor changes after proofreadin
    corecore