146 research outputs found

    Model-Based Development of Distributed Embedded Systems by the Example of the Scicos/SynDEx Framework

    Full text link
    The embedded systems engineering industry faces increasing demands for more functionality, rapidly evolving components, and shrinking schedules. Abilities to quickly adapt to changes, develop products with safe design, minimize project costs, and deliver timely are needed. Model-based development (MBD) follows a separation of concerns by abstracting systems with an appropriate intensity. MBD promises higher comprehension by modeling on several abstraction-levels, formal verification, and automated code generation. This thesis demonstrates MBD with the Scicos/SynDEx framework on a distributed embedded system. Scicos is a modeling and simulation environment for hybrid systems. SynDEx is a rapid prototyping integrated development environment for distributed systems. Performed examples implement well-known control algorithms on a target system containing several networked microcontrollers, sensors, and actuators. The addressed research question tackles the feasibility of MBD for medium-sized embedded systems. In the case of single-processor applications experiments show that the comforts of tool-provided simulation, verification, and code-generation have to be weighed against an additional memory consumption in dynamic and static memory compared to a hand-written approach. Establishing a near-seamless modeling-framework with Scicos/SynDEx is expensive. An increased development effort indicates a high price for developing single applications, but might pay off for product families. A further drawback was that the distributed code generated with SynDEx could not be adapted to microcontrollers without a significant alteration of the scheduling tables. The Scicos/SynDEx framework forms a valuable tool set that, however, still needs many improvements. Therefore, its usage is only recommended for experimental purposes.Comment: 146 pages, Master's Thesi

    Contracts and Behavioral Patterns for SoS: The EU IP DANSE approach

    Full text link
    This paper presents some of the results of the first year of DANSE, one of the first EU IP projects dedicated to SoS. Concretely, we offer a tool chain that allows to specify SoS and SoS requirements at high level, and analyse them using powerful toolsets coming from the formal verification area. At the high level, we use UPDM, the system model provided by the british army as well as a new type of contract based on behavioral patterns. At low level, we rely on a powerful simulation toolset combined with recent advances from the area of statistical model checking. The approach has been applied to a case study developed at EADS Innovation Works.Comment: In Proceedings AiSoS 2013, arXiv:1311.319

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    Development Process for Multi-Disciplinary Embedded Control Systems

    Get PDF
    This report contains the progress report for the qualification exam for Industrial PhD student Sune Wolff. Initial work on describing a development process for multi-disciplinary systems using collaborative modelling and co-simulation is described

    Modeling, Analysis and Simulation of Ubiquitous Systems Using a MDE Approach

    No full text
    International audienceThe growth of industrial activities during the last decades and the diversity of industrial products require standards and common methodologies for building and integrating systems. It is also required that working groups use the same terminologies and concepts needed for each domain. The Model Driven Engineering approach aims to give an answer, while using a high level method based on models and transformations. In this paper, we use this approach to model ubiquitous systems. Those systems are composed of devices interconnected through various kinds of network, in order to get and provide information. We present a model for this class of systems and, its use, in terms of analysis and simulation, in the field of energy while studying real cases from our industrial partner, Terra Nova Energy

    Semantics and Execution of Domain Specific Models

    Get PDF
    In this paper we present a two-level approach to extend the abstract syntax of models with concrete semantics. First, a light-weight execution interface for iteratable models with a generic user interface allows the tool smith to provide arbitrary execution and visualization engine implementations for his or her Domain Specific Modeling Language (DSML). We discuss how the common execution manager runtime allows co-simulations of different model types and engine implementations to provide a flexible framework in the diverse DSML scenery. Second, as a concrete but nevertheless generic implementation of a simulation engine for behavior models, we present semantic model specifications and a runtime interfacing to the Ptolemy II tool suite. As a project in the area of model simulation, the latter provides a mature sophisticated and formally grounded backbone for model execution. We present our approach as an open source Eclipse integration to be an extension to the Eclipse modeling projects. After introducing basic concepts, the paper explains how simulations are currently being integrated into the framework and presents some illustrative case studies also covering UML approaches
    • …
    corecore