2 research outputs found

    Towards Multidimensional Verification: Where Functional Meets Non-Functional

    Full text link
    Trends in advanced electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends towards the multidimensional verification concept. The concept is motivated by an example for the functional and power verification dimensions.Comment: 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC

    A Novel Sequence Generation Approach to Diagnose Faults in Reconfigurable Scan Networks

    Get PDF
    With the complexity of nanoelectronic devices rapidly increasing, an efficient way to handle large number of embedded instruments became a necessity. The IEEE 1687 standard was introduced to provide flexibility in accessing and controlling such instrumentation through a reconfigurable scan chain. Nowadays, together with testing the system for defects that may affect the scan chains themselves, the diagnosis of such faults is also important. This article proposes a method for generating stimuli to precisely identify permanent high-level faults in a IEEE 1687 reconfigurable scan chain: the system is modeled as a finite state automaton where faults correspond to multiple incorrect transitions; then, a dynamic greedy algorithm is used to select a sequence of inputs able to distinguish between all possible faults. Experimental results on the widely-adopted ITC'02 and ITC'16 benchmark suites, as well as on synthetically generated circuits, clearly demonstrate the applicability and effectiveness of the proposed approach: generated sequences are two orders of magnitude shorter compared to previous methodologies, while the computational resources required remain acceptable even for larger benchmarks
    corecore