17,102 research outputs found

    Specification and automatic verification of trust-based multi-agent systems

    Get PDF
    We present a new logic-based framework for modeling and automatically verifying trust in Multi-Agent Systems (MASs). We start by refining TCTL, a temporal logic of trust that extends the Computation Tree Logic (CTL) to enable reasoning about trust with preconditions. A new vector-based version of interpreted systems is defined to capture the trust relationship between the interacting parties. We introduce a set of reasoning postulates along with formal proofs to support our logic. Moreover, we present new symbolic model checking algorithms to formally and automatically verify the system under consideration against some desirable properties expressed using the proposed logic. We fully implemented our proposed algorithms as a model checker tool called MCMAS-T on top of the MCMAS model checker for MASs along with its new input language VISPL (Vector-extended ISPL). We evaluated the tool and reported experimental results using a real-life scenario in the healthcare field

    Formal verification of an autonomous personal robotic assistant

    Get PDF
    Human–robot teams are likely to be used in a variety of situations wherever humans require the assistance of robotic systems. Obvious examples include healthcare and manufacturing, in which people need the assistance of machines to perform key tasks. It is essential for robots working in close proximity to people to be both safe and trustworthy. In this paper we examine formal verification of a high-level planner/scheduler for autonomous personal robotic assistants such as Care-O-bot ™ . We describe how a model of Care-O-bot and its environment was developed using Brahms, a multiagent workflow language. Formal verification was then carried out by translating this to the input language of an existing model checker. Finally we present some formal verification results and describe how these could be complemented by simulation-based testing and realworld end-user validation in order to increase the practical and perceived safety and trustworthiness of robotic assistants

    Human-Robot Trust Integrated Task Allocation and Symbolic Motion planning for Heterogeneous Multi-robot Systems

    Full text link
    This paper presents a human-robot trust integrated task allocation and motion planning framework for multi-robot systems (MRS) in performing a set of tasks concurrently. A set of task specifications in parallel are conjuncted with MRS to synthesize a task allocation automaton. Each transition of the task allocation automaton is associated with the total trust value of human in corresponding robots. Here, the human-robot trust model is constructed with a dynamic Bayesian network (DBN) by considering individual robot performance, safety coefficient, human cognitive workload and overall evaluation of task allocation. Hence, a task allocation path with maximum encoded human-robot trust can be searched based on the current trust value of each robot in the task allocation automaton. Symbolic motion planning (SMP) is implemented for each robot after they obtain the sequence of actions. The task allocation path can be intermittently updated with this DBN based trust model. The overall strategy is demonstrated by a simulation with 5 robots and 3 parallel subtask automata

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration
    • …
    corecore