941 research outputs found

    Wireless Interference Identification with Convolutional Neural Networks

    Full text link
    The steadily growing use of license-free frequency bands requires reliable coexistence management for deterministic medium utilization. For interference mitigation, proper wireless interference identification (WII) is essential. In this work we propose the first WII approach based upon deep convolutional neural networks (CNNs). The CNN naively learns its features through self-optimization during an extensive data-driven GPU-based training process. We propose a CNN example which is based upon sensing snapshots with a limited duration of 12.8 {\mu}s and an acquisition bandwidth of 10 MHz. The CNN differs between 15 classes. They represent packet transmissions of IEEE 802.11 b/g, IEEE 802.15.4 and IEEE 802.15.1 with overlapping frequency channels within the 2.4 GHz ISM band. We show that the CNN outperforms state-of-the-art WII approaches and has a classification accuracy greater than 95% for signal-to-noise ratio of at least -5 dB

    Development of a Mobile Application for Plant Disease Detection using Parameter Optimization Method in Convolutional Neural Networks Algorithm

    Get PDF
    Plant diseases are a serious problem in agriculture that affects both the quantity and quality of the harvest. To address this issue, authors developed a mobile software capable of detecting diseases in plants by analyzing their leaves using a smartphone camera. This research used the Convolutional Neural Networks (CNN) method for this purpose. In the initial experiments, authors compared the performance of four deep learning architectures: VGG-19, Xception, ResNet-50, and InceptionV3. Based on the results of the experiments, authors decided to use the CNN Xception as it yielded good performance. However, the CNN algorithm does not attain its maximum potential when using default parameters. Hence, authors goal is to enhance its performance by implementing parameter optimization using the grid search algorithm to determine the optimal combination of learning rate and epoch values. The experimental results demonstrated that the implementation of parameter optimization in CNN significantly improved accuracy in potato plants from 96.3% to 97.9% and in maize plants from 87.6% to 93.4%

    Learning Robust Radio Frequency Fingerprints Using Deep Convolutional Neural Networks

    Get PDF
    Radio Frequency Fingerprinting (RFF) techniques, which attribute uniquely identifiable signal distortions to emitters via Machine Learning (ML) classifiers, are limited by fingerprint variability under different operational conditions. First, this work studied the effect of frequency channel for typical RFF techniques. Performance characterization using the multi-class Matthews Correlation Coefficient (MCC) revealed that using frequency channels other than those used to train the models leads to deterioration in MCC to under 0.05 (random guess), indicating that single-channel models are inadequate for realistic operation. Second, this work presented a novel way of studying fingerprint variability through Fingerprint Extraction through Distortion Reconstruction (FEDR), a neural network-based approach for quantifying signal distortions in a relative distortion latent space. Coupled with a Dense network, FEDR fingerprints were evaluated against common RFF techniques for up to 100 unseen classes, where FEDR achieved best performance with MCC ranging from 0.945 (5 classes) to 0.746 (100 classes), using 73% fewer training parameters than the next-best technique
    • …
    corecore