3 research outputs found

    Affinity Mixup for Weakly Supervised Sound Event Detection

    Full text link
    The weakly supervised sound event detection problem is the task of predicting the presence of sound events and their corresponding starting and ending points in a weakly labeled dataset. A weak dataset associates each training sample (a short recording) to one or more present sources. Networks that solely rely on convolutional and recurrent layers cannot directly relate multiple frames in a recording. Motivated by attention and graph neural networks, we introduce the concept of an affinity mixup to incorporate time-level similarities and make a connection between frames. This regularization technique mixes up features in different layers using an adaptive affinity matrix. Our proposed affinity mixup network improves over state-of-the-art techniques event-F1 scores by 8.2%8.2\%

    Guided learning for weakly-labeled semi-supervised sound event detection

    Full text link
    We propose a simple but efficient method termed Guided Learning for weakly-labeled semi-supervised sound event detection (SED). There are two sub-targets implied in weakly-labeled SED: audio tagging and boundary detection. Instead of designing a single model by considering a trade-off between the two sub-targets, we design a teacher model aiming at audio tagging to guide a student model aiming at boundary detection to learn using the unlabeled data. The guidance is guaranteed by the audio tagging performance gap of the two models. In the meantime, the student model liberated from the trade-off is able to provide more excellent boundary detection results. We propose a principle to design such two models based on the relation between the temporal compression scale and the two sub-targets. We also propose an end-to-end semi-supervised learning process for these two models to enable their abilities to rise alternately. Experiments on the DCASE2018 Task4 dataset show that our approach achieves competitive performance.Comment: Accepted by ICASSP202

    Towards duration robust weakly supervised sound event detection

    Full text link
    Sound event detection (SED) is the task of tagging the absence or presence of audio events and their corresponding interval within a given audio clip. While SED can be done using supervised machine learning, where training data is fully labeled with access to per event timestamps and duration, our work focuses on weakly-supervised sound event detection (WSSED), where prior knowledge about an event's duration is unavailable. Recent research within the field focuses on improving segment- and event-level localization performance for specific datasets regarding specific evaluation metrics. Specifically, well-performing event-level localization requires fully labeled development subsets to obtain event duration estimates, which significantly benefits localization performance. Moreover, well-performing segment-level localization models output predictions at a coarse-scale (e.g., 1 second), hindering their deployment on datasets containing very short events (< 1 second). This work proposes a duration robust CRNN (CDur) framework, which aims to achieve competitive performance in terms of segment- and event-level localization. This paper proposes a new post-processing strategy named "Triple Threshold" and investigates two data augmentation methods along with a label smoothing method within the scope of WSSED. Evaluation of our model is done on the DCASE2017 and 2018 Task 4 datasets, and URBAN-SED. Our model outperforms other approaches on the DCASE2018 and URBAN-SED datasets without requiring prior duration knowledge. In particular, our model is capable of similar performance to strongly-labeled supervised models on the URBAN-SED dataset. Lastly, ablation experiments to reveal that without post-processing, our model's localization performance drop is significantly lower compared with other approaches
    corecore