234,045 research outputs found

    2D-1D Wavelet Reconstruction As A Tool For Source Finding In Spectroscopic Imaging Surveys

    Full text link
    Today, image denoising by thresholding of wavelet coefficients is a commonly used tool for 2D image enhancement. Since the data product of spectroscopic imaging surveys has two spatial and one spectral dimension, the techniques for denoising have to be adapted to this change in dimensionality. In this paper we will review the basic method of denoising data by thresholding wavelet coefficients and implement a 2D-1D wavelet decomposition to obtain an efficient way of denoising spectroscopic data cubes. We conduct different simulations to evaluate the usefulness of the algorithm as part of a source finding pipeline.Comment: 8 pages, 7 figures, 1 table, accepted for publication in PASA Special Issue on Source Finding and Visualizatio

    Raman and Fluorescence Enhancement Approaches in Graphene-Based Platforms for Optical Sensing and Imaging

    Get PDF
    This article belongs to the Special Issue Physics and Chemistry of Graphene: From Fundamentals to Applications.The search for novel platforms and metamaterials for the enhancement of optical and particularly Raman signals is still an objective since optical techniques offer affordable, noninvasive methods with high spatial resolution and penetration depth adequate to detect and image a large variety of systems, from 2D materials to molecules in complex media and tissues. Definitely, plasmonic materials produce the most efficient enhancement through the surface-enhanced Raman scattering (SERS) process, allowing single-molecule detection, and are the most studied ones. Here we focus on less explored aspects of SERS such as the role of the inter-nanoparticle (NP) distance and the ultra-small NP size limit (down to a few nm) and on novel approaches involving graphene and graphene-related materials. The issues on reproducibility and homogeneity for the quantification of the probe molecules will also be discussed. Other light enhancement mechanisms, in particular resonant and interference Raman scatterings, as well as the platforms that allow combining several of them, are presented in this review with a special focus on the possibilities that graphene offers for the design and fabrication of novel architectures. Recent fluorescence enhancement platforms and strategies, so important for bio-detection and imaging, are reviewed as well as the relevance of graphene oxide and graphene/carbon nanodots in the field.The research leading to these results has received funding from Ministerio de Ciencia e Innovación (RTI2018-096918-B-C41). S.C. acknowledges the grant BES-2016-076440 from MINECO

    Introduction to the Special Issue on Partial Differential Equations and Geometry-Driven Diffusion in Image Processing and Analysis

    Get PDF
    ©1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.1998.66117

    Editorial Special Issue on Enhancement Algorithms, Methodologies and Technology for Spectral Sensing

    Get PDF
    The paper is an editorial issue on enhancement algorithms, methodologies and technology for spectral sensing and serves as a valuable and useful reference for researchers and technologists interested in the evolving state-of-the-art and/or the emerging science and technology base associated with spectral-based sensing and monitoring problem. This issue is particularly relevant to those seeking new and improved solutions for detecting chemical, biological, radiological and explosive threats on the land, sea, and in the air

    Implementation of Adaptive Unsharp Masking as a pre-filtering method for watermark detection and extraction

    Get PDF
    Digital watermarking has been one of the focal points of research interests in order to provide multimedia security in the last decade. Watermark data, belonging to the user, are embedded on an original work such as text, audio, image, and video and thus, product ownership can be proved. Various robust watermarking algorithms have been developed in order to extract/detect the watermark against such attacks. Although watermarking algorithms in the transform domain differ from others by different combinations of transform techniques, it is difficult to decide on an algorithm for a specific application. Therefore, instead of developing a new watermarking algorithm with different combinations of transform techniques, we propose a novel and effective watermark extraction and detection method by pre-filtering, namely Adaptive Unsharp Masking (AUM). In spite of the fact that Unsharp Masking (UM) based pre-filtering is used for watermark extraction/detection in the literature by causing the details of the watermarked image become more manifest, effectiveness of UM may decrease in some cases of attacks. In this study, AUM has been proposed for pre-filtering as a solution to the disadvantages of UM. Experimental results show that AUM performs better up to 11\% in objective quality metrics than that of the results when pre-filtering is not used. Moreover; AUM proposed for pre-filtering in the transform domain image watermarking is as effective as that of used in image enhancement and can be applied in an algorithm-independent way for pre-filtering in transform domain image watermarking

    The gains and losses of face in ongoing intercultural interaction: A case study of Chinese participant perspectives

    Get PDF
    Given the small number of existing studies of face in intercultural settings and the increasing attention given to participant perspectives in face research, this paper explores the gains and losses of face as perceived by Chinese government officials during a three-week delegation visit to the United States of America. These perspectives were obtained from the group’s spontaneous discussions during regular evening meetings when they reflected on the day’s events. Several key features emerged from the discussions. Firstly, face enhancement was a primary goal for the visit – enhancement of their own face as a delegation, of the face of the Ministry they belonged to, as well as the face of their American hosts. Secondly, the delegates attempted to manage these face goals strategically. Thirdly, they spoke of face as a volatile image that could rise and fall sharply and yet endured across incidents, days and weeks. The paper reports on and discusses these participant perspectives in the light of recent theorizing on face
    corecore