25 research outputs found

    Improved Noisy Student Training for Automatic Speech Recognition

    Full text link
    Recently, a semi-supervised learning method known as "noisy student training" has been shown to improve image classification performance of deep networks significantly. Noisy student training is an iterative self-training method that leverages augmentation to improve network performance. In this work, we adapt and improve noisy student training for automatic speech recognition, employing (adaptive) SpecAugment as the augmentation method. We find effective methods to filter, balance and augment the data generated in between self-training iterations. By doing so, we are able to obtain word error rates (WERs) 4.2%/8.6% on the clean/noisy LibriSpeech test sets by only using the clean 100h subset of LibriSpeech as the supervised set and the rest (860h) as the unlabeled set. Furthermore, we are able to achieve WERs 1.7%/3.4% on the clean/noisy LibriSpeech test sets by using the unlab-60k subset of LibriLight as the unlabeled set for LibriSpeech 960h. We are thus able to improve upon the previous state-of-the-art clean/noisy test WERs achieved on LibriSpeech 100h (4.74%/12.20%) and LibriSpeech (1.9%/4.1%).Comment: 5 pages, 5 figures, 4 tables; v2: minor revisions, reference adde

    PM-MMUT: Boosted Phone-Mask Data Augmentation using Multi-Modeling Unit Training for Phonetic-Reduction-Robust E2E Speech Recognition

    Full text link
    Consonant and vowel reduction are often encountered in speech, which might cause performance degradation in automatic speech recognition (ASR). Our recently proposed learning strategy based on masking, Phone Masking Training (PMT), alleviates the impact of such phenomenon in Uyghur ASR. Although PMT achieves remarkably improvements, there still exists room for further gains due to the granularity mismatch between the masking unit of PMT (phoneme) and the modeling unit (word-piece). To boost the performance of PMT, we propose multi-modeling unit training (MMUT) architecture fusion with PMT (PM-MMUT). The idea of MMUT framework is to split the Encoder into two parts including acoustic feature sequences to phoneme-level representation (AF-to-PLR) and phoneme-level representation to word-piece-level representation (PLR-to-WPLR). It allows AF-to-PLR to be optimized by an intermediate phoneme-based CTC loss to learn the rich phoneme-level context information brought by PMT. Experimental results on Uyghur ASR show that the proposed approaches outperform obviously the pure PMT. We also conduct experiments on the 960-hour Librispeech benchmark using ESPnet1, which achieves about 10% relative WER reduction on all the test set without LM fusion comparing with the latest official ESPnet1 pre-trained model.Comment: Accepted to INTERSPEECH 202
    corecore