4 research outputs found

    Speaker-Sensitive Dual Memory Networks for Multi-Turn Slot Tagging

    Full text link
    In multi-turn dialogs, natural language understanding models can introduce obvious errors by being blind to contextual information. To incorporate dialog history, we present a neural architecture with Speaker-Sensitive Dual Memory Networks which encode utterances differently depending on the speaker. This addresses the different extents of information available to the system - the system knows only the surface form of user utterances while it has the exact semantics of system output. We performed experiments on real user data from Microsoft Cortana, a commercial personal assistant. The result showed a significant performance improvement over the state-of-the-art slot tagging models using contextual information.Comment: 5 pages conference paper accepted to IEEE ASRU 2017. Will be published in December 201

    Coupled Representation Learning for Domains, Intents and Slots in Spoken Language Understanding

    Full text link
    Representation learning is an essential problem in a wide range of applications and it is important for performing downstream tasks successfully. In this paper, we propose a new model that learns coupled representations of domains, intents, and slots by taking advantage of their hierarchical dependency in a Spoken Language Understanding system. Our proposed model learns the vector representation of intents based on the slots tied to these intents by aggregating the representations of the slots. Similarly, the vector representation of a domain is learned by aggregating the representations of the intents tied to a specific domain. To the best of our knowledge, it is the first approach to jointly learning the representations of domains, intents, and slots using their hierarchical relationships. The experimental results demonstrate the effectiveness of the representations learned by our model, as evidenced by improved performance on the contextual cross-domain reranking task.Comment: IEEE SLT 201

    A Scalable Neural Shortlisting-Reranking Approach for Large-Scale Domain Classification in Natural Language Understanding

    Full text link
    Intelligent personal digital assistants (IPDAs), a popular real-life application with spoken language understanding capabilities, can cover potentially thousands of overlapping domains for natural language understanding, and the task of finding the best domain to handle an utterance becomes a challenging problem on a large scale. In this paper, we propose a set of efficient and scalable neural shortlisting-reranking models for large-scale domain classification in IPDAs. The shortlisting stage focuses on efficiently trimming all domains down to a list of k-best candidate domains, and the reranking stage performs a list-wise reranking of the initial k-best domains with additional contextual information. We show the effectiveness of our approach with extensive experiments on 1,500 IPDA domains.Comment: Accepted to NAACL 201

    Efficient Large-Scale Domain Classification with Personalized Attention

    Full text link
    In this paper, we explore the task of mapping spoken language utterances to one of thousands of natural language understanding domains in intelligent personal digital assistants (IPDAs). This scenario is observed for many mainstream IPDAs in industry that allow third parties to develop thousands of new domains to augment built-in ones to rapidly increase domain coverage and overall IPDA capabilities. We propose a scalable neural model architecture with a shared encoder, a novel attention mechanism that incorporates personalization information and domain-specific classifiers that solves the problem efficiently. Our architecture is designed to efficiently accommodate new domains that appear in-between full model retraining cycles with a rapid bootstrapping mechanism two orders of magnitude faster than retraining. We account for practical constraints in real-time production systems, and design to minimize memory footprint and runtime latency. We demonstrate that incorporating personalization results in significantly more accurate domain classification in the setting with thousands of overlapping domains.Comment: Accepted to ACL 201
    corecore