7,530 research outputs found

    Analyzing And Improving Neural Speaker Embeddings for ASR

    Full text link
    Neural speaker embeddings encode the speaker's speech characteristics through a DNN model and are prevalent for speaker verification tasks. However, few studies have investigated the usage of neural speaker embeddings for an ASR system. In this work, we present our efforts w.r.t integrating neural speaker embeddings into a conformer based hybrid HMM ASR system. For ASR, our improved embedding extraction pipeline in combination with the Weighted-Simple-Add integration method results in x-vector and c-vector reaching on par performance with i-vectors. We further compare and analyze different speaker embeddings. We present our acoustic model improvements obtained by switching from newbob learning rate schedule to one cycle learning schedule resulting in a ~3% relative WER reduction on Switchboard, additionally reducing the overall training time by 17%. By further adding neural speaker embeddings, we gain additional ~3% relative WER improvement on Hub5'00. Our best Conformer-based hybrid ASR system with speaker embeddings achieves 9.0% WER on Hub5'00 and Hub5'01 with training on SWB 300h.Comment: Accepted at ITG Speech Communications 202

    Syllable classification using static matrices and prosodic features

    Get PDF
    In this paper we explore the usefulness of prosodic features for syllable classification. In order to do this, we represent the syllable as a static analysis unit such that its acoustic-temporal dynamics could be merged into a set of features that the SVM classifier will consider as a whole. In the first part of our experiment we used MFCC as features for classification, obtaining a maximum accuracy of 86.66%. The second part of our study tests whether the prosodic information is complementary to the cepstral information for syllable classification. The results obtained show that combining the two types of information does improve the classification, but further analysis is necessary for a more successful combination of the two types of features

    Leveraging ASR Pretrained Conformers for Speaker Verification through Transfer Learning and Knowledge Distillation

    Full text link
    This paper explores the use of ASR-pretrained Conformers for speaker verification, leveraging their strengths in modeling speech signals. We introduce three strategies: (1) Transfer learning to initialize the speaker embedding network, improving generalization and reducing overfitting. (2) Knowledge distillation to train a more flexible speaker verification model, incorporating frame-level ASR loss as an auxiliary task. (3) A lightweight speaker adaptor for efficient feature conversion without altering the original ASR Conformer, allowing parallel ASR and speaker verification. Experiments on VoxCeleb show significant improvements: transfer learning yields a 0.48% EER, knowledge distillation results in a 0.43% EER, and the speaker adaptor approach, with just an added 4.92M parameters to a 130.94M-parameter model, achieves a 0.57% EER. Overall, our methods effectively transfer ASR capabilities to speaker verification tasks
    corecore