6,391 research outputs found

    Online real-time crowd behavior detection in video sequences

    Get PDF
    Automatically detecting events in crowded scenes is a challenging task in Computer Vision. A number of offline approaches have been proposed for solving the problem of crowd behavior detection, however the offline assumption limits their application in real-world video surveillance systems. In this paper, we propose an online and real-time method for detecting events in crowded video sequences. The proposed approach is based on the combination of visual feature extraction and image segmentation and it works without the need of a training phase. A quantitative experimental evaluation has been carried out on multiple publicly available video sequences, containing data from various crowd scenarios and different types of events, to demonstrate the effectiveness of the approach

    Social Attention: Modeling Attention in Human Crowds

    Full text link
    Robots that navigate through human crowds need to be able to plan safe, efficient, and human predictable trajectories. This is a particularly challenging problem as it requires the robot to predict future human trajectories within a crowd where everyone implicitly cooperates with each other to avoid collisions. Previous approaches to human trajectory prediction have modeled the interactions between humans as a function of proximity. However, that is not necessarily true as some people in our immediate vicinity moving in the same direction might not be as important as other people that are further away, but that might collide with us in the future. In this work, we propose Social Attention, a novel trajectory prediction model that captures the relative importance of each person when navigating in the crowd, irrespective of their proximity. We demonstrate the performance of our method against a state-of-the-art approach on two publicly available crowd datasets and analyze the trained attention model to gain a better understanding of which surrounding agents humans attend to, when navigating in a crowd
    • …
    corecore