3 research outputs found

    SkinNet: A Deep Learning Framework for Skin Lesion Segmentation

    Full text link
    There has been a steady increase in the incidence of skin cancer worldwide, with a high rate of mortality. Early detection and segmentation of skin lesions are crucial for timely diagnosis and treatment, necessary to improve the survival rate of patients. However, skin lesion segmentation is a challenging task due to the low contrast of lesions and their high similarity in terms of appearance, to healthy tissue. This underlines the need for an accurate and automatic approach for skin lesion segmentation. To tackle this issue, we propose a convolutional neural network (CNN) called SkinNet. The proposed CNN is a modified version of U-Net. We compared the performance of our approach with other state-of-the-art techniques, using the ISBI 2017 challenge dataset. Our approach outperformed the others in terms of the Dice coefficient, Jaccard index and sensitivity, evaluated on the held-out challenge test data set, across 5-fold cross validation experiments. SkinNet achieved an average value of 85.10, 76.67 and 93.0%, for the DC, JI, and SE, respectively.Comment: 2 pages, submitted to NSS/MIC 201

    FocusNet: An attention-based Fully Convolutional Network for Medical Image Segmentation

    Get PDF
    We propose a novel technique to incorporate attention within convolutional neural networks using feature maps generated by a separate convolutional autoencoder. Our attention architecture is well suited for incorporation with deep convolutional networks. We evaluate our model on benchmark segmentation datasets in skin cancer segmentation and lung lesion segmentation. Results show highly competitive performance when compared with U-Net and it's residual variant
    corecore