478 research outputs found

    High-quality hyperspectral reconstruction using a spectral prior

    Get PDF
    We present a novel hyperspectral image reconstruction algorithm, which overcomes the long-standing tradeoff between spectral accuracy and spatial resolution in existing compressive imaging approaches. Our method consists of two steps: First, we learn nonlinear spectral representations from real-world hyperspectral datasets; for this, we build a convolutional autoencoder, which allows reconstructing its own input through its encoder and decoder networks. Second, we introduce a novel optimization method, which jointly regularizes the fidelity of the learned nonlinear spectral representations and the sparsity of gradients in the spatial domain, by means of our new fidelity prior. Our technique can be applied to any existing compressive imaging architecture, and has been thoroughly tested both in simulation, and by building a prototype hyperspectral imaging system. It outperforms the state-of-the-art methods from each architecture, both in terms of spectral accuracy and spatial resolution, while its computational complexity is reduced by two orders of magnitude with respect to sparse coding techniques. Moreover, we present two additional applications of our method: hyperspectral interpolation and demosaicing. Last, we have created a new high-resolution hyperspectral dataset containing sharper images of more spectral variety than existing ones, available through our project website

    Computational Spectral Imaging: A Contemporary Overview

    Full text link
    Spectral imaging collects and processes information along spatial and spectral coordinates quantified in discrete voxels, which can be treated as a 3D spectral data cube. The spectral images (SIs) allow identifying objects, crops, and materials in the scene through their spectral behavior. Since most spectral optical systems can only employ 1D or maximum 2D sensors, it is challenging to directly acquire the 3D information from available commercial sensors. As an alternative, computational spectral imaging (CSI) has emerged as a sensing tool where the 3D data can be obtained using 2D encoded projections. Then, a computational recovery process must be employed to retrieve the SI. CSI enables the development of snapshot optical systems that reduce acquisition time and provide low computational storage costs compared to conventional scanning systems. Recent advances in deep learning (DL) have allowed the design of data-driven CSI to improve the SI reconstruction or, even more, perform high-level tasks such as classification, unmixing, or anomaly detection directly from 2D encoded projections. This work summarises the advances in CSI, starting with SI and its relevance; continuing with the most relevant compressive spectral optical systems. Then, CSI with DL will be introduced, and the recent advances in combining the physical optical design with computational DL algorithms to solve high-level tasks

    S^2-Transformer for Mask-Aware Hyperspectral Image Reconstruction

    Full text link
    The technology of hyperspectral imaging (HSI) records the visual information upon long-range-distributed spectral wavelengths. A representative hyperspectral image acquisition procedure conducts a 3D-to-2D encoding by the coded aperture snapshot spectral imager (CASSI) and requires a software decoder for the 3D signal reconstruction. By observing this physical encoding procedure, two major challenges stand in the way of a high-fidelity reconstruction. (i) To obtain 2D measurements, CASSI dislocates multiple channels by disperser-titling and squeezes them onto the same spatial region, yielding an entangled data loss. (ii) The physical coded aperture leads to a masked data loss by selectively blocking the pixel-wise light exposure. To tackle these challenges, we propose a spatial-spectral (S^2-) Transformer network with a mask-aware learning strategy. First, we simultaneously leverage spatial and spectral attention modeling to disentangle the blended information in the 2D measurement along both two dimensions. A series of Transformer structures are systematically designed to fully investigate the spatial and spectral informative properties of the hyperspectral data. Second, the masked pixels will induce higher prediction difficulty and should be treated differently from unmasked ones. Thereby, we adaptively prioritize the loss penalty attributing to the mask structure by inferring the pixel-wise reconstruction difficulty upon the mask-encoded prediction. We theoretically discusses the distinct convergence tendencies between masked/unmasked regions of the proposed learning strategy. Extensive experiments demonstrates that the proposed method achieves superior reconstruction performance. Additionally, we empirically elaborate the behaviour of spatial and spectral attentions under the proposed architecture, and comprehensively examine the impact of the mask-aware learning.Comment: 11 pages, 16 figures, 6 tables, Code: https://github.com/Jiamian-Wang/S2-transformer-HS
    • …
    corecore