503 research outputs found

    Knowledge Distillation and Continual Learning for Optimized Deep Neural Networks

    Get PDF
    Over the past few years, deep learning (DL) has been achieving state-of-theart performance on various human tasks such as speech generation, language translation, image segmentation, and object detection. While traditional machine learning models require hand-crafted features, deep learning algorithms can automatically extract discriminative features and learn complex knowledge from large datasets. This powerful learning ability makes deep learning models attractive to both academia and big corporations. Despite their popularity, deep learning methods still have two main limitations: large memory consumption and catastrophic knowledge forgetting. First, DL algorithms use very deep neural networks (DNNs) with many billion parameters, which have a big model size and a slow inference speed. This restricts the application of DNNs in resource-constraint devices such as mobile phones and autonomous vehicles. Second, DNNs are known to suffer from catastrophic forgetting. When incrementally learning new tasks, the model performance on old tasks significantly drops. The ability to accommodate new knowledge while retaining previously learned knowledge is called continual learning. Since the realworld environments in which the model operates are always evolving, a robust neural network needs to have this continual learning ability for adapting to new changes

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Essays on globalization, commodities, and local economic development

    Get PDF
    Over the course of this dissertation, I will explore the market mechanisms through which the unintended consequences of commodity booms in resource-oriented local labor markets have been fostered by features of international trade, which has been intensified over the past few decades. These features include offshoring, the presence of multinational companies, and participation in global value chains. For this purpose, this dissertation explores the cases of the mining and agricultural sectors in two major, resource-rich, emerging economies and exploits the different sources of exogenous variation peculiar to these commodity sectors to identify the mechanisms of trade in these sectors for contemporaneous and long-term local economic development. The work is organized in four chapters and provides a wide range of policy recommendations for resource-rich, developing economies to encourage a production structure that is more consistent with long-term local economic development. The first part of this dissertation comprises two chapters that explore the variation induced by the expansion of the copper industry in Chile, the largest copper producer, during the commodity price boom in the 2000s. The first chapter examines the heterogeneous economic impacts between multinational companies and domestic firms on the characterization of the long-term effects of a resource boom in local labor markets. On the side of firms, the empirical evidence suggests that although the linkage effect of multinationals can be lower than that of domestic firms due to offshoring, the local productivity spillovers induced by multinationals are slightly higher than those induced by domestic firms. These productivity spillovers can mitigate the productivity losses from crowding-out effects from the booming sector. Additionally, on the workers’ side, multinationals in the resource sector can affect the local economy by indirectly increasing housing rents via higher wages, which may imply lower, overall, welfare gains from the resource boom in relation to domestic firms. The second chapter analyzes the sectoral upgrading from low-processed mine copper to smelting and refined copper exports in Chile to estimate the local welfare and productivity gains from industrial upgrading in local labor markets. This chapter uses spatial variation in the relative importance between low-processed mine copper and smelting and refined copper production, with two main objectives: first, to measure the role of resource endowment and export competition in inducing industrial upgrading in the local labor markets; and second, to estimate the local welfare and productivity gains from industrial upgrading. The results suggest that the gains from this sectoral industrial upgrading in local labor markets are small and largely concentrated in the primary segment of mineral extraction. The last two chapters provide a different perspective by studying the different contexts and margins of adjustment of local areas to trade shocks to commodities. The third chapter examines the case of small-scale gold mining in the Peruvian Amazon to show how informal forms of extractive industries, relative to formal activities, are fostered by international demand shocks. For this purpose, this chapter estimates the heterogeneous effects of international price shocks on the intensity of activity of formal, informal, and illegal, small-scale gold producers. This chapter provides evidence that the differences in mining activity between illegal and legal producers disappear in the wake of high prices. The results suggest a rise in the profitability of illegal mining relative to formal and informal gold mining during price booms. Finally, the last chapter departs from the mining sector to analyze the extent to which increases in market access lead to higher local economic development and growth in remote places with low density and different degrees of specialization in agriculture. For this purpose, following a market access approach, this chapter estimates the effects of urbanization and road-infrastructure development on the structural transformation of rural villages in Chile. The empirical strategy uses the spatial and temporal variation in urban growth and road-infrastructure development to estimate the elasticities of access to urban markets by the population as well as to the farm and non-farm employment of rural villages. The results suggest important heterogeneity across rural areas, revealing that the growth of the non-farm sector induced by market access is higher in locations with better conditions for agricultural production

    Spatial-Temporal Variation of Land Use Changes In Ambon City

    Get PDF
    Changes in land use have caused various spatial consequences that occur substantially in an area. This study examines the pattern of land use changes from different room variations. The research was at a location in Ambon City. The materials in this study are Landsat 8 OLI/TIRS in 2010 and 2020, DEM SRTM, administrative maps, and development center maps. Research data were analyzed descriptively analytical, spatial, and temporal from the overlay results. The study results in show changes over ten years (2010-2020), indicating an increase in settlements covering an area of 23,810 ha per year. Differences in spatial variations based on administrative site, additional blocks in Sirimau District covering an area of 76,880 ha, and withdrawal of the most significant land in mixed gardens surrounding an area of 58,859 ha. In addition, there was additional weaponry on steep slopes (15 -30%) covering an area of 38,503 ha and a protected area of 16,505 ha by converting the use of forest land covering an area of 17,366 ha, and most of it took place in the city center. The addition of settlements also occurred in an accessibility ( 3 km) area of 116,370 ha, most scattered in the secondary center of 86,520 ha

    General Course Catalog [2022/23 academic year]

    Get PDF
    General Course Catalog, 2022/23 academic yearhttps://repository.stcloudstate.edu/undergencat/1134/thumbnail.jp

    Land Use and Land Cover Mapping in a Changing World

    Get PDF
    It is increasingly being recognized that land use and land cover changes driven by anthropogenic pressures are impacting terrestrial and aquatic ecosystems and their services, human society, and human livelihoods and well-being. This Special Issue contains 12 original papers covering various issues related to land use and land use changes in various parts of the world (see references), with the purpose of providing a forum to exchange ideas and progress in related areas. Research topics include land use targets, dynamic modelling and mapping using satellite images, pressures from energy production, deforestation, impacts on ecosystem services, aboveground biomass evaluation, and investigations on libraries of legends and classification systems

    CERNAS: Current Evolution and Research Novelty in Agricultural Sustainability

    Get PDF
    Climate changes pose overwhelming impacts on primary production and, consequently, on agricultural and animal farming. Additionally, at present, agriculture still depends strongly on fossil fuels both for energy and production factors ,such as synthetized inorganic fertilizers and harmful chemicals such as pesticides. The need to feed the growing world population poses many challenges. The need to reduce environmental impacts to a minimum, maintain healthy ecosystems, and improve soil microbiota are central to ensuring a promising future for coming generations. Livestock production under cover crop systems helps to alleviate compaction so that oxygen and water can sufficiently flow in the soil, add organic matter, and help hold soil in place, reducing crusting and protecting against erosion. The use of organic plant production practices allied to the control of substances used in agriculture also decisively contributes to alleviating the pressure on ecosystems. Some of the goals of this new decade are to use enhanced sustainable production methodologies to improve the input/output ratios of primary production, reduce environmental impacts, and rely on new innovative technologies. This reprint addresses original studies and reviews focused on the current evolution and research novelty in agricultural sustainability. New developments are discussed on issues related to quality of soil, natural fertilizers, or the sustainable use of land and water. Also, crop protection techniques are pivotal for sustainable food production under the challenges of the Sustainable Development Goals of the United Nations, allied to innovative weed control methodologies as a way to reduce the utilization of pesticides. The role of precision and smart agriculture is becoming more pertinent as communication technologies improve at a rapid rate. Waste management, reuse of agro-industrial residues, extension of shelf life, and use of new technologies are ways to reduce food waste, all contributing to higher sustainability in food supply chains, leading to a more rational use of natural resources. The unquestionable role of bees as pollinators and contributors to biodiversity is adjacent to characterizing beekeeping activities, which in turn contributes, together with the valorization of endemic varieties of plant foods, to the development of local communities. Finally, the short circuits and local food markets have a decisive role in the preservation and enhancement of rural economies.info:eu-repo/semantics/publishedVersio

    Optimization of Rooftop Delineation from Aerial Imagery with Deep Learning

    Get PDF
    High-definition (HD) maps of building rooftops or footprints are important for urban application and disaster management. Rapid creation of such HD maps through rooftop delineation at the city scale using high-resolution satellite and aerial images with deep leaning methods has become feasible and draw much attention. In the context of rooftop delineation, the end-to-end Deep Convolutional Neural Networks (DCNNs) have demonstrated remarkable performance in accurately delineating rooftops from aerial imagery. However, several challenges still exist in this task, which are addressed in this thesis. These challenges include: (1) the generalization issues of models when test data differ from training data, (2) the scale-variance issues in rooftop delineation, and (3) the high cost of annotating accurate rooftop boundaries. To address the challenges mentioned above, this thesis proposes three novel deep learning-based methods. Firstly, a super-resolution network named Momentum and Spatial-Channel Attention Residual Feature Aggregation Network (MSCA-RFANet) is proposed to tackle the generalization issue. The proposed super-resolution network shows better performance compared to its baseline and other state-of-the-art methods. In addition, data composition with MSCA-RFANet shows high performance on dealing with the generalization issues. Secondly, an end-to-end rooftop delineation network named Higher Resolution Network with Dynamic Scale Training (HigherNet-DST) is developed to mitigate the scale-variance issue. The experimental results on publicly available building datasets demonstrate that HigherNet-DST achieves competitive performance in rooftop delineation, particularly excelling in accurately delineating small buildings. Lastly, a weakly supervised deep learning network named Box2Boundary is developed to reduce the annotation cost. The experimental results show that Box2Boundary with post processing is effective in dealing with the cost annotation issues with decent performance. Consequently, the research with these three sub-topics and the three resulting papers are thought to hold potential implications for various practical applications

    CERNAS – Current Evolution and Research Novelty in Agricultural Sustainability

    Get PDF
    This book addresses original studies and reviews focused on the current evolution and research novelty in agricultural sustainability. New developments are discussed on issues related with quality of soil, natural fertilizers or the sustainable use of land and water. Also crop protection techniques are pivotal for the sustainable food production under the challenges of the Sustainable Development Goals of the United Nations, allied to innovative weed control methodologies, as a way to reduce the utilization of pesticides. The role of precision and smart agriculture is becoming more pertinent as the communication technologies improve at a high rate. Waste management, reuse of agro industrial residues, extension of shelf life and use of new technologies are ways to reduce food waste, all contributing to a higher sustainability of the food supply chains, leading to a more rational use of natural resources. The unquestionable role of bees as pollinators and contributors for biodiversity is subjacent to the work of characterization of beekeeping activities, which in turn contribute, together with the valorization of endemic varieties of plant foods, for the development of local communities. Finally, the short circuits and local food markets have a decisive role in the preservation and enhancement of rural economies.info:eu-repo/semantics/publishedVersio

    Desarrollo de geotecnologías aplicadas a la inspección y monitorización de entornos industriales

    Get PDF
    Tesis por compendio de publicaciones[ES]El desarrollo tecnológico de las últimas dos décadas ha supuesto un cambio radical que está llevando a un nuevo paradigma en el que se entremezclan el mundo físico y el digital. Estos cambios han influido enormemente en la sociedad, modificando las formas de comunicación, acceso a información, ocio, trabajo, etc. Asimismo, la industria ha adoptado estas tecnologías disruptivas, las cuales están contribuyendo a lograr un mayor control y automatización del proceso productivo. En el ámbito industrial, las tareas de mantenimiento son críticas para garantizar el correcto funcionamiento de una planta o instalación, ya que influyen directamente en la productividad y pueden suponer un elevado costo adicional. Las nuevas tecnologías están posibilitando la monitorización continua y a la inspección automatizada, proporcionando herramientas auxiliares a los inspectores que mejoran la detección de fallos y permiten anticipar y optimizar la planificación de las tareas de mantenimiento. Con el objetivo de desarrollar herramientas que aporten mejoras en las tareas de mantenimiento en industria, la presente tesis doctoral se basa en el estudio de como las geotecnologías pueden aportar soluciones óptimas en la monitorización e inspección. Debido a la gran variedad de entornos industriales, las herramientas de apoyo al mantenimiento deben adaptarse a cada caso en concreto. En este aspecto, y con el fin de demostrar la adaptabilidad de la geomática y las geotecnologías, se han estudiado instalaciones industriales de ámbitos muy diversos, como una sala de máquinas (escenario interior), plantas fotovoltaicas (escenario exterior) y soldaduras (interior y exterior). La escala de los escenarios objeto de estudio ha sido muy variada, desde las escalas más pequeñas, para el estudio de las soldaduras y la sala de máquinas, a las escalas más grandes, en los estudios de evolución de la vegetación y presencia de masas de agua en plantas fotovoltaicas. Las geotecnologías demuestran su versatilidad para trabajar a distintas escalas, con soluciones que permiten un gran detalle y precisión, como la fotogrametría de rango cercano y el sistema de escaneado portátil (Portable Mobile Mapping System - PMMS), y otras que pueden abarcar zonas más amplias del territorio, como es el caso de la teledetección o la fotogrametría con drones. Según lo expuesto anteriormente, el enfoque de la tesis ha sido el estudio de elementos o instalaciones industriales a diferentes escalas. En el primer caso se desarrolló una herramienta para el control de calidad externo de soldaduras utilizando fotogrametría de rango cercano y algoritmos para la detección automática de defectos. En el segundo caso se propuso el uso de un PMMS para optimizar la toma de datos en las tareas de inspección en instalaciones fluidomecánicas. En el tercer caso se utilizó la fotogrametría con drones y la combinación de imágenes RGB y térmicas con algoritmos de visión computacional para la detección de patologías en paneles fotovoltaicos. Finalmente, para la monitorización de la vegetación y la detección de masas de agua en el entorno de plantas fotovoltaicas, se empleó la teledetección mediante el cálculo de índices espectrales. [EN]The technological development of the last two decades has brought about a radical change that is leading to a new paradigm in which the physical and digital worlds are intertwined. These changes have had a great impact on society, modifying communication methods, access to information, leisure, work, etc. In addition, the industry has adopted these disruptive technologies, which are contributing to achieving greater control and automation of the production process. In the industrial sector, maintenance tasks are critical to ensuring the proper operation of a plant or facility, as they directly influence productivity and can involve high additional costs. New technologies are making continuous monitoring and automated inspection possible, providing auxiliary tools to inspectors that improve fault detection and allow for the anticipation and optimization of maintenance task planning. With the aim of developing tools that provide improvements in maintenance tasks in industry, this doctoral thesis is based on the study of how geotechnologies can provide optimal solutions in monitoring and inspection. Due to the great variety of industrial environments, maintenance support tools must adapt to each specific case. In this regard, and in order to demonstrate the adaptability of geomatics and geotechnologies, industrial installations from very diverse areas have been studied, such as a machine room (indoor scenario), photovoltaic plants (outdoor scenario), and welding (indoor and outdoor scenarios). The scale of the studied scenarios has been very varied, ranging from smaller scales for the study of welds and machine rooms, to larger scales in the studies of vegetation evolution and the presence of bodies of water in photovoltaic plants. Geotechnologies demonstrate their versatility to work at different scales, with solutions that allow for great detail and precision, such as close-range photogrammetry and the Portable Mobile Mapping System (PMMS), as well as others that can cover larger areas of the territory, such as remote sensing or photogrammetry with drones. The focus of the thesis has been the study of industrial elements or installations at different scales. In the first case, a tool was developed for external quality control of welding, using close-range photogrammetry and algorithms for automatic defect detection. In the second case, the use of a PMMS is proposed to optimize data collection in fluid-mechanical installation inspection tasks. In the third case, drone photogrammetry and the combination of RGB and thermal images with computer vision algorithms were used for the detection of pathologies in photovoltaic panels. Finally, for the monitoring of vegetation and the detection of water masses in the environment of photovoltaic plants, remote sensing was employed through the calculation of spectral indices
    corecore