1,004 research outputs found

    Performance of Spatial Modulation using Measured Real-World Channels

    Full text link
    In this paper, for the first time real-world channel measurements are used to analyse the performance of spatial modulation (SM), where a full analysis of the average bit error rate performance (ABER) of SM using measured urban correlated and uncorrelated Rayleigh fading channels is provided. The channel measurements are taken from an outdoor urban multiple input multiple output (MIMO) measurement campaign. Moreover, ABER performance results using simulated Rayleigh fading channels are provided and compared with a derived analytical bound for the ABER of SM, and the ABER results for SM using the measured urban channels. The ABER results using the measured urban channels validate the derived analytical bound and the ABER results using the simulated channels. Finally, the ABER of SM is compared with the performance of spatial multiplexing (SMX) using the measured urban channels for small and large scale MIMO. It is shown that SM offers nearly the same or a slightly better performance than SMX for small scale MIMO. However, SM offers large reduction in ABER for large scale MIMO.Comment: IEEE Vehicular Technology Conference Fall 2013 (VTC-Fall 2013), Accepte

    Massive MIMO with Non-Ideal Arbitrary Arrays: Hardware Scaling Laws and Circuit-Aware Design

    Get PDF
    Massive multiple-input multiple-output (MIMO) systems are cellular networks where the base stations (BSs) are equipped with unconventionally many antennas, deployed on co-located or distributed arrays. Huge spatial degrees-of-freedom are achieved by coherent processing over these massive arrays, which provide strong signal gains, resilience to imperfect channel knowledge, and low interference. This comes at the price of more infrastructure; the hardware cost and circuit power consumption scale linearly/affinely with the number of BS antennas NN. Hence, the key to cost-efficient deployment of large arrays is low-cost antenna branches with low circuit power, in contrast to today's conventional expensive and power-hungry BS antenna branches. Such low-cost transceivers are prone to hardware imperfections, but it has been conjectured that the huge degrees-of-freedom would bring robustness to such imperfections. We prove this claim for a generalized uplink system with multiplicative phase-drifts, additive distortion noise, and noise amplification. Specifically, we derive closed-form expressions for the user rates and a scaling law that shows how fast the hardware imperfections can increase with NN while maintaining high rates. The connection between this scaling law and the power consumption of different transceiver circuits is rigorously exemplified. This reveals that one can make the circuit power increase as N\sqrt{N}, instead of linearly, by careful circuit-aware system design.Comment: Accepted for publication in IEEE Transactions on Wireless Communications, 16 pages, 8 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/hardware-scaling-law

    Application of Space-Time Diversity/Coding For Power Line Channels

    Get PDF
    The purpose of the present work is to evaluate the application of space-time block codes to the transmission of digital data over the power-line communication channel (PLC). Data transmitted over the power-line channel is usually corrupted by impulsive noise. In this work we analyse the performance of space-time block codes in this type of environment and show that a significant performance gain can be achieved at almost no processing expense

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN
    corecore