807 research outputs found

    The Fragility of Quantum Information?

    Full text link
    We address the question whether there is a fundamental reason why quantum information is more fragile than classical information. We show that some answers can be found by considering the existence of quantum memories and their dimensional dependence.Comment: Essay on quantum information: no new results. Ten pages, published in Lec. Notes in Comp. Science, Vol. 7505, pp. 47-56 (2012. One reference adde

    Resolvent Positive Linear Operators Exhibit the Reduction Phenomenon

    Full text link
    The spectral bound, s(a A + b V), of a combination of a resolvent positive linear operator A and an operator of multiplication V, was shown by Kato to be convex in b \in R. This is shown here, through an elementary lemma, to imply that s(a A + b V) is also convex in a > 0, and notably, \partial s(a A + b V) / \partial a <= s(A) when it exists. Diffusions typically have s(A) <= 0, so that for diffusions with spatially heterogeneous growth or decay rates, greater mixing reduces growth. Models of the evolution of dispersal in particular have found this result when A is a Laplacian or second-order elliptic operator, or a nonlocal diffusion operator, implying selection for reduced dispersal. These cases are shown here to be part of a single, broadly general, `reduction' phenomenon.Comment: 7 pages, 53 citations. v.3: added citations, corrections in introductory definitions. v.2: Revised abstract, more text, and details in new proof of Lindqvist's inequalit

    Good approximate quantum LDPC codes from spacetime circuit Hamiltonians

    Get PDF
    We study approximate quantum low-density parity-check (QLDPC) codes, which are approximate quantum error-correcting codes specified as the ground space of a frustration-free local Hamiltonian, whose terms do not necessarily commute. Such codes generalize stabilizer QLDPC codes, which are exact quantum error-correcting codes with sparse, low-weight stabilizer generators (i.e. each stabilizer generator acts on a few qubits, and each qubit participates in a few stabilizer generators). Our investigation is motivated by an important question in Hamiltonian complexity and quantum coding theory: do stabilizer QLDPC codes with constant rate, linear distance, and constant-weight stabilizers exist? We show that obtaining such optimal scaling of parameters (modulo polylogarithmic corrections) is possible if we go beyond stabilizer codes: we prove the existence of a family of [[N,k,d,ε]][[N,k,d,\varepsilon]] approximate QLDPC codes that encode k=Ω~(N)k = \widetilde{\Omega}(N) logical qubits into NN physical qubits with distance d=Ω~(N)d = \widetilde{\Omega}(N) and approximation infidelity ε=O(1/polylog(N))\varepsilon = \mathcal{O}(1/\textrm{polylog}(N)). The code space is stabilized by a set of 10-local noncommuting projectors, with each physical qubit only participating in O(polylogN)\mathcal{O}(\textrm{polylog} N) projectors. We prove the existence of an efficient encoding map, and we show that arbitrary Pauli errors can be locally detected by circuits of polylogarithmic depth. Finally, we show that the spectral gap of the code Hamiltonian is Ω~(N−3.09)\widetilde{\Omega}(N^{-3.09}) by analyzing a spacetime circuit-to-Hamiltonian construction for a bitonic sorting network architecture that is spatially local in polylog(N)\textrm{polylog}(N) dimensions.Comment: 51 pages, 13 figure

    Random walk in Markovian environment

    Full text link
    We prove a quenched central limit theorem for random walks with bounded increments in a randomly evolving environment on Zd\mathbb{Z}^d. We assume that the transition probabilities of the walk depend not too strongly on the environment and that the evolution of the environment is Markovian with strong spatial and temporal mixing properties.Comment: Published in at http://dx.doi.org/10.1214/07-AOP369 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotic entanglement in 1D quantum walks with a time-dependent coined

    Full text link
    Discrete-time quantum walk evolve by a unitary operator which involves two operators a conditional shift in position space and a coin operator. This operator entangles the coin and position degrees of freedom of the walker. In this paper, we investigate the asymptotic behavior of the coin position entanglement (CPE) for an inhomogeneous quantum walk which determined by two orthogonal matrices in one-dimensional lattice. Free parameters of coin operator together provide many conditions under which a measurement perform on the coin state yield the value of entanglement on the resulting position quantum state. We study the problem analytically for all values that two free parameters of coin operator can take and the conditions under which entanglement becomes maximal are sought.Comment: 23 pages, 4 figures, accepted for publication in IJMPB. arXiv admin note: text overlap with arXiv:1001.5326 by other author
    • …
    corecore