38 research outputs found

    Magnetic Material Modelling of Electrical Machines

    Get PDF
    The need for electromechanical energy conversion that takes place in electric motors, generators, and actuators is an important aspect associated with current development. The efficiency and effectiveness of the conversion process depends on both the design of the devices and the materials used in those devices. In this context, this book addresses important aspects of electrical machines, namely their materials, design, and optimization. It is essential for the design process of electrical machines to be carried out through extensive numerical field computations. Thus, the reprint also focuses on the accuracy of these computations, as well as the quality of the material models that are adopted. Another aspect of interest is the modeling of properties such as hysteresis, alternating and rotating losses and demagnetization. In addition, the characterization of materials and their dependence on mechanical quantities such as stresses and temperature are also considered. The reprint also addresses another aspect that needs to be considered for the development of the optimal global system in some applications, which is the case of drives that are associated with electrical machines

    Synchronous reluctance motors with fractional slot-concentrated windings

    Get PDF
    PhD ThesisToday, high efficiency and high torque density electrical machines are a growing research interest and machines that contain no permanent magnet material are increasingly sought. Despite the lack of interest over the last twenty years, the permanent magnet-free synchronous reluctance machine is undergoing a revival and has become a research focus due to its magnet-free construction, high efficiency and robustness. They are now considered a potential future technology for future industrial variable speed drive applications and even electric vehicles. This thesis presents for the first time a synchronous reluctance motor with fractional slot-concentrated windings, utilizing non-overlapping single tooth wound coils, for high efficiency and high torque density permanent magnet-free electric drives. It presents all stages of the design and validation process from the initial concept stage through the design of such a machine, to the test and validation of a constructed prototype motor. The prototype machine utilizes a segmented stator core back iron arrangement for ease of winding and facilitating high slot fill factors. The conventional synchronous reluctance motor topology utilizes distributed winding systems with a large number of stator slots, presenting some limitations and challenges when considering high efficiency, high torque density electrical machines with low cost. This thesis aims to present an advancement in synchronous reluctance technology by identifying limitations and improving the design of synchronous reluctance motors through development of a novel machine topology. With the presented novel fractional slot concentrated winding machine design, additional challenges such as high torque ripple and low power factor arise, they are explored and analysed - the design modified to minimise any unwanted parasitic effects. The electrical and electromagnetic characteristics of the developed machine are also explored and compared with that of a conventional machine. A novel FEA post-processing technique is developed to analyse individual air-gap field harmonic torque contributions and the machines dq theory also modified in order to account for additional effects. The developed machine is found to be lower cost, lower mass and higher efficiency than an equivalent induction or conventional synchronous reluctance motor, but does suffer higher torque ripples and lower power factor. The prototype is validated using static and dynamic testing with the results showing a good match with finite element predictions. The work contained within this thesis can be considered as a first step to developing commercial technology based on the concept for variable speed drive applications.Financial assistance was provided by was provided by the UK Engineering and Physical Sciences Research Council (EPSRC) in the form of a Doctoral Training Award and additional financial assistance was kindly provided by Cummins Generator Technologies, Stamford, UK, through industrial sponsorship of this wor

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Magnetically levitated hysteresis motor driven linear stage for in-vacuum transportation tasks

    Get PDF
    This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019Cataloged from PDF version of thesis.Includes bibliographical references (pages 241-246).This thesis presents a new in-vacuum reticle transportation mechanism for extreme ultraviolet (EUV) photolithography machines. In the photolithography process, the reticle is a quartz plate that contains a pattern of the integrated circuit, which needs to be transported between a storage position and the exposure stage. In next-generation EUV lithography machines, the reticle handling system must satisfy the following requirements: (1) transport the reticle through a distance of 2 meters, (2) the height of the mechanism needs to be within 100 mm, (3) operate in vacuum, and (4) satisfy ultra-tight contamination requirements. To fulfill these requirements, a conventional robotic reticle handler is inadequate. In this work, we designed, built, and tested a magnetically-levitated linear stage prototype, targeting at the reticle transportation application. Compared with robot manipulators, linear stages typically require less volume for long-distance transportation tasks.Magnetic suspension is used to eliminate mechanical contact and thereby avoid particle generation that can contaminate the reticle. The stage's linear motion is driven by linear hysteresis motors, which allows using solid-steel motor secondaries on the moving stage. This is desirable for in-vacuum operation, since permanent magnets can out-gas in high vacuum when not encapsulated. The magnetic suspension of the stage is achieved using a novel linear bearingless slice motor design, where the stage's magnetic suspension in three degrees of freedom, including vertical, pitch, and roll, are achieved passively. This compact design effectively reduces the number of sensors and actuators being used. The prototype system has successfully levitated the moving stage. The resonance frequency of the passively levitated degrees of freedom is approximately 10 Hz, and the suspension bandwidth of the actively-controlled degrees of freedom is about 60 Hz.The stage's maximum thrust force is 5.8 N under a 2.5 A current amplitude, which corresponds to a stage acceleration of 1200 M/s². This is able to satisfy the acceleration requirement for reticle transportation task. The stage was tested to track a reticle handling reference trajectory, where the maximum position tracking error of our linear stage is 50 [mu]m. The stage's lateral displacements during motion is below 50 [mu]m, which is well below making mechanical contact to the side walls. To our knowledge, this work represents the first study of linear hysteresis motors, and the first linear bearingless slice motor design. Hysteresis motors are a type of electric machine that operates using the magnetic hysteresis effect of the secondary material. Since the magnetization in the rotor lags behind the external field, a thrust force/torque can be generated.In prior usage, hysteresis motors have been operated in open-loop, which makes them unsuitable for applications where dynamic performance is critical. As a part of this thesis work, we also studied the modeling and closed-loop torque and position control for hysteresis motors. The proposed control method was tested with three rotary hysteresis motors, including two custom-made motors of different rotor materials and one off-the-shelf hysteresis motor. Experimental results show that position control for all three motors can reach a bandwidth of 130 Hz. To our best knowledge, this is the first work that enabled high-bandwidth torque and position control for hysteresis motors, which allows this motor to be used for servo applications.Sponsored by ASMLby Lei Zhou.Ph. D.Ph.D. Massachusetts Institute of Technology, Department of Mechanical Engineerin

    Sensorless control of surface mounted permanent magnet machine using fundamental PWM excitation

    Get PDF
    This thesis describes the development of a sensorless control method for a surface mounted permanent magnet synchronous machine drive system. The saturation saliency in the machine is tracked from the stator current transient response to the fundamental space vector PWM (pulse width modulation) excitation. The rotor position and speed signals are obtained from measurements of the stator current derivative during the voltage vectors contained in the normal fundamental PWM sequence. In principle, this scheme can work over a wide speed range. However, the accuracy of the current derivative-measurements made during narrow voltage vectors reduces. This is because high frequency current oscillations exist after each vector switching instant, and these take a finite time to die down. Therefore, in this thesis, vector extension and compensation schemes are proposed which ensure correct current derivative measurements are made, even during narrow voltage vectors, so that any induced additional current distortion is kept to a minimum. The causes of the high frequency switching oscillations in the AC drive system are investigated and several approaches are developed to reduce the impact of these oscillations. These include the development of a novel modification to the IGBT gate drive circuit to reduce the requirement for PWM vector extension. Further improvements are made by modifications to the current derivative sensor design together with their associated signal processing circuits. In order to eliminate other harmonic disturbances and the high frequency noise appearing in the estimated position signals, an adaptive disturbance identifier and a tracking observer are incorporated to improve the position and speed signals. Experimental results show that the final sensorless control system can achieve excellent speed and position control performance

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Disturbance Suppression in PMSM Drives Physical Investigation, Algorithm Design and Implementation

    Get PDF
    The work of this Ph.D. focuses on the investigation of advanced control algorithms for the control of constant and periodic disturbances in Permanent Magnet Synchronous Machines (PMSMs), with the discussion of different methods for improving their negative influence on the machine current and the torque produced at the shaft. The discussion of the disturbances from a control perspective starts with the study of the parameter uncertainties effect on the dynamical performances of the current control and after the detailed analysis in the frequency domain, simple methods for improving the state-of-art decoupling network are given and validated on the testbench. Thanks to the feature of the introduced estimator, the transient behavior of the proposed strategy results in a consistent fast and precise performance. The control scheme allows to avoid the implementation of anti-windup mechanisms in the current control, making the overall controller less sensitive to parameter mismatch. Further, due to the low computational burden, the algorithm is suitable for low cost hardware. Subsequently, the more complex issue of periodic disturbances has been deeply investigated. The theoretical model proposed is validated by comparing the real measured torque with an estimation based on the recovered disturbance affecting the observed voltages and currents. The results are clearly acceptable and further, the experimental validation stresses out the fact that few terms have a predominant role in producing the harmonic disturbances, compared to the others. This consideration lets develop two strategies for suppressing the different harmonic orders present in the machine torque at low-speed operation. One strategy relies on on-line adaptive policies, where the estimated information is passed through a sequence of optimization algorithms with different objectives. In this context, hints on the guaranteed stability are also provided in order to confirm the practical feasibility of the algorithm. The other strategy is based on the off-line generation of some pre-determined functions, limiting the on-line burden to the computation of look-up tables. Both methods brought satisfactory results during the experimental validation, confirming the validity of our approximations made on the original complex model. Although the hardware testbed setup limited the opportunity to validate the methodologies at low speed, this represents a realistic scenario, in fact at higher speed the artificial injection of harmonics within the machine current becomes challenging due to the high electrical rotational speed and it brings more negative effects, in terms of losses and audible noise than benefits on the shaft stress, in fact, the machine inertia acts as a natural filter for the high frequencies harmonics. In summary, it can be said that the research work on advanced control algorithms for the disturbance suppression in PMSM drives has produced affordable and reliable methodologies, which can be of practical implementation for various industrial drives
    corecore