3 research outputs found

    EllipsoidNet: Ellipsoid Representation for Point Cloud Classification and Segmentation

    Full text link
    Point cloud patterns are hard to learn because of the implicit local geometry features among the orderless points. In recent years, point cloud representation in 2D space has attracted increasing research interest since it exposes the local geometry features in a 2D space. By projecting those points to a 2D feature map, the relationship between points is inherited in the context between pixels, which are further extracted by a 2D convolutional neural network. However, existing 2D representing methods are either accuracy limited or time-consuming. In this paper, we propose a novel 2D representation method that projects a point cloud onto an ellipsoid surface space, where local patterns are well exposed in ellipsoid-level and point-level. Additionally, a novel convolutional neural network named EllipsoidNet is proposed to utilize those features for point cloud classification and segmentation applications. The proposed methods are evaluated in ModelNet40 and ShapeNet benchmarks, where the advantages are clearly shown over existing 2D representation methods.Comment: 11 page

    Cloud Transformers

    Full text link
    We present a new versatile building block for deep point cloud processing architectures. This building block combines the ideas of spatial transformers and multi-view CNNs with the efficiency of standard convolutional layers in two and three-dimensional dense grids. The new block operates via multiple parallel heads, whereas each head differentiably rasterizes feature representations of individual points into a low-dimensional space, and then uses dense convolution to propagate information across points. The results of the processing of individual heads are then combined together resulting in the update of point features. Using the new block, we build architectures for both discriminative (point cloud segmentation, point cloud classification) and generative (point cloud inpainting and image-based point cloud reconstruction) tasks. The resulting architectures invariably achieve state-of-the-art performance for these tasks, demonstrating the versatility and universality of the new block for point cloud processing

    Spatial Transformer for 3D Point Clouds

    Full text link
    Deep neural networks are widely used for understanding 3D point clouds. At each point convolution layer, features are computed from local neighborhoods of 3D points and combined for subsequent processing in order to extract semantic information. Existing methods adopt the same individual point neighborhoods throughout the network layers, defined by the same metric on the fixed input point coordinates. This common practice is easy to implement but not necessarily optimal. Ideally, local neighborhoods should be different at different layers, as more latent information is extracted at deeper layers. We propose a novel end-to-end approach to learn different non-rigid transformations of the input point cloud so that optimal local neighborhoods can be adopted at each layer. We propose both linear (affine) and non-linear (projective and deformable) spatial transformers for 3D point clouds. With spatial transformers on the ShapeNet part segmentation dataset, the network achieves higher accuracy for all categories, with 8\% gain on earphones and rockets in particular. Our method also outperforms the state-of-the-art on other point cloud tasks such as classification, detection, and semantic segmentation. Visualizations show that spatial transformers can learn features more efficiently by dynamically altering local neighborhoods according to the geometry and semantics of 3D shapes in spite of their within-category variations. Our code is publicly available at https://github.com/samaonline/spatial-transformer-for-3d-point-clouds.Comment: To appear in IEEE Transactions on PAMI, 202
    corecore