2,186 research outputs found

    Spatial Throughput Maximization of Wireless Powered Communication Networks

    Full text link
    Wireless charging is a promising way to power wireless nodes' transmissions. This paper considers new dual-function access points (APs) which are able to support the energy/information transmission to/from wireless nodes. We focus on a large-scale wireless powered communication network (WPCN), and use stochastic geometry to analyze the wireless nodes' performance tradeoff between energy harvesting and information transmission. We study two cases with battery-free and battery-deployed wireless nodes. For both cases, we consider a harvest-then-transmit protocol by partitioning each time frame into a downlink (DL) phase for energy transfer, and an uplink (UL) phase for information transfer. By jointly optimizing frame partition between the two phases and the wireless nodes' transmit power, we maximize the wireless nodes' spatial throughput subject to a successful information transmission probability constraint. For the battery-free case, we show that the wireless nodes prefer to choose small transmit power to obtain large transmission opportunity. For the battery-deployed case, we first study an ideal infinite-capacity battery scenario for wireless nodes, and show that the optimal charging design is not unique, due to the sufficient energy stored in the battery. We then extend to the practical finite-capacity battery scenario. Although the exact performance is difficult to be obtained analytically, it is shown to be upper and lower bounded by those in the infinite-capacity battery scenario and the battery-free case, respectively. Finally, we provide numerical results to corroborate our study.Comment: 15 double-column pages, 8 figures, to appear in IEEE JSAC in February 2015, special issue on wireless communications powered by energy harvesting and wireless energy transfe

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Proportional fairness in wireless powered CSMA/CA based IoT networks

    Get PDF
    This paper considers the deployment of a hybrid wireless data/power access point in an 802.11-based wireless powered IoT network. The proportionally fair allocation of throughputs across IoT nodes is considered under the constraints of energy neutrality and CPU capability for each device. The joint optimization of wireless powering and data communication resources takes the CSMA/CA random channel access features, e.g. the backoff procedure, collisions, protocol overhead into account. Numerical results show that the optimized solution can effectively balance individual throughput across nodes, and meanwhile proportionally maximize the overall sum throughput under energy constraints.Comment: Accepted by Globecom 201
    • …
    corecore