144,766 research outputs found
Multi-scale gapped smoothing algorithm for robust baseline-free damage detection in optical infrared thermography
Flash thermography is a promising technique to perform rapid non-destructive testing of composite materials. However, it is well known that several difficulties are inherently paired with this approach, such as non-uniform heating, measurement noise and lateral heat diffusion effects. Hence, advanced signal-processing techniques are indispensable in order to analyze the recorded dataset. One such processing technique is Gapped Smoothing Algorithm, which predicts a gapped pixel’s value in its sound state from a measurement in the defected state by evaluating only its neighboring pixels. However, the standard Gapped Smoothing Algorithm uses a fixed spatial gap size, which induces issues to detect variable defect sizes in a noisy dataset.
In this paper, a Multi-Scale Gapped Smoothing Algorithm (MSGSA) is introduced as a baseline-free image processing technique and an extension to the standard Gapped Smoothing Algorithm. The MSGSA makes use of the evaluation of a wide range of spatial gap sizes so that defects of highly different dimensions are identified. Moreover, it is shown that a weighted combination of all assessed spatial gap sizes significantly improves the detectability of defects and results in an (almost) zero-reference background. The technique thus effectively suppresses the measurement noise and excitation non-uniformity. The efficiency of the MSGSA technique is evaluated and confirmed through numerical simulation and an experimental procedure of flash thermography on carbon fiber reinforced polymers with various defect sizes
Recommended from our members
Investigating the impact of image content on the energy efficiency of hardware-accelerated digital spatial filters
Battery-operated low-power portable computing devices are becoming an inseparable part of human daily life. One of the major goals is to achieve the longest battery life in such a device. Additionally, the need for performance in processing multimedia content is ever increasing. Processing image and video content consume more power than other applications. A widely used approach to improving energy efficiency is to implement the computationally intensive functions as digital hardware accelerators. Spatial filtering is one of the most commonly used methods of digital image processing. As per the Fourier theory, an image can be considered as a two-dimensional signal that is composed of spatially extended two-dimensional sinusoidal patterns called gratings. Spatial frequency theory states that sinusoidal gratings can be characterised by its spatial frequency, phase, amplitude, and orientation. This article presents results from our investigation into assessing the impact of these characteristics of a digital image on the energy efficiency of hardware-accelerated spatial filters employed to process the same image. Two greyscale images each of size 128 × 128 pixels comprising two-dimensional sinusoidal gratings at maximum spatial frequency of 64 cycles per image orientated at 0° and 90°, respectively, were processed in a hardware implemented Gaussian smoothing filter. The energy efficiency of the filter was compared with the baseline energy efficiency of processing a featureless plain black image. The results show that energy efficiency of the filter drops to 12.5% when the gratings are orientated at 0° whilst rises to 72.38% at 90°
Adaptive Smoothing in fMRI Data Processing Neural Networks
Functional Magnetic Resonance Imaging (fMRI) relies on multi-step data
processing pipelines to accurately determine brain activity; among them, the
crucial step of spatial smoothing. These pipelines are commonly suboptimal,
given the local optimisation strategy they use, treating each step in
isolation. With the advent of new tools for deep learning, recent work has
proposed to turn these pipelines into end-to-end learning networks. This change
of paradigm offers new avenues to improvement as it allows for a global
optimisation. The current work aims at benefitting from this paradigm shift by
defining a smoothing step as a layer in these networks able to adaptively
modulate the degree of smoothing required by each brain volume to better
accomplish a given data analysis task. The viability is evaluated on real fMRI
data where subjects did alternate between left and right finger tapping tasks.Comment: 4 pages, 3 figures, 1 table, IEEE 2017 International Workshop on
Pattern Recognition in Neuroimaging (PRNI
Regularized brain reading with shrinkage and smoothing
Functional neuroimaging measures how the brain responds to complex stimuli.
However, sample sizes are modest, noise is substantial, and stimuli are high
dimensional. Hence, direct estimates are inherently imprecise and call for
regularization. We compare a suite of approaches which regularize via
shrinkage: ridge regression, the elastic net (a generalization of ridge
regression and the lasso), and a hierarchical Bayesian model based on small
area estimation (SAE). We contrast regularization with spatial smoothing and
combinations of smoothing and shrinkage. All methods are tested on functional
magnetic resonance imaging (fMRI) data from multiple subjects participating in
two different experiments related to reading, for both predicting neural
response to stimuli and decoding stimuli from responses. Interestingly, when
the regularization parameters are chosen by cross-validation independently for
every voxel, low/high regularization is chosen in voxels where the
classification accuracy is high/low, indicating that the regularization
intensity is a good tool for identification of relevant voxels for the
cognitive task. Surprisingly, all the regularization methods work about equally
well, suggesting that beating basic smoothing and shrinkage will take not only
clever methods, but also careful modeling.Comment: Published at http://dx.doi.org/10.1214/15-AOAS837 in the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Signal Processing Spreads a Voxel’s Temporal Frequency Task-Activated Peak and Induces Spatial Correlations in Dual-Task Complex-Valued fMRI
Roll 213. Barth's Counsel Schedule / Bannon's History Copies. Image 7 of 21. (13 October, 1955) [PHO 1.213.7]The Boleslaus Lukaszewski (Father Luke) Photographs contain more than 28,000 images of Saint Louis University people, activities, and events between 1951 and 1970. The photographs were taken by Boleslaus Lukaszewski (Father Luke), a Jesuit priest and member of the University's Philosophy Department faculty
Signal Processing Spreads a Voxel’s Temporal Frequency Task-Activated Peak and Induces Spatial Correlations in Dual-Task Complex-Valued fMRI
- …
