8,044 research outputs found

    Signal and System Design for Wireless Power Transfer : Prototype, Experiment and Validation

    Get PDF
    A new line of research on communications and signals design for Wireless Power Transfer (WPT) has recently emerged in the communication literature. Promising signal strategies to maximize the power transfer efficiency of WPT rely on (energy) beamforming, waveform, modulation and transmit diversity, and a combination thereof. To a great extent, the study of those strategies has so far been limited to theoretical performance analysis. In this paper, we study the real over-the-air performance of all the aforementioned signal strategies for WPT. To that end, we have designed, prototyped and experimented an innovative radiative WPT architecture based on Software-Defined Radio (SDR) that can operate in open-loop and closed-loop (with channel acquisition at the transmitter) modes. The prototype consists of three important blocks, namely the channel estimator, the signal generator, and the energy harvester. The experiments have been conducted in a variety of deployments, including frequency flat and frequency selective channels, under static and mobility conditions. Experiments highlight that a channeladaptive WPT architecture based on joint beamforming and waveform design offers significant performance improvements in harvested DC power over conventional single-antenna/multiantenna continuous wave systems. The experimental results fully validate the observations predicted from the theoretical signal designs and confirm the crucial and beneficial role played by the energy harvester nonlinearity.Comment: Accepted to IEEE Transactions on Wireless Communication

    14.6-GHz LiNbO/sub 3/ microdisk photonic self-homodyne RF receiver

    Get PDF
    Nonlinear optical modulation combined with simultaneous photonic and RF resonance in an LiNbO/sub 3/ microdisk modulator is used to create a self-homodyne photonic RF receiver. Carrier and sidebands are mixed in the optical domain, and the modulated optical signal is detected using a photodetector. The photodetector has a bandwidth matched to the baseband signal. It filters out the high-frequency components and generates the baseband photocurrent. Receiver operation is demonstrated by demodulating up to 100-Mb/s digital data from a 14.6-GHz carrier frequency without any high-speed electronic components. A bit error rate of 10/sup -9/ is measured for 10-Mb/s downconverted digital data at -15-dBm received RF power. Preliminary results of employing this photonic RF receiver in a short-distance Ku-band wireless link demonstrate the potential of using high-quality optical microresonators in RF receiver applications
    • …
    corecore