2,605 research outputs found

    Unsupervised Feature Learning by Deep Sparse Coding

    Full text link
    In this paper, we propose a new unsupervised feature learning framework, namely Deep Sparse Coding (DeepSC), that extends sparse coding to a multi-layer architecture for visual object recognition tasks. The main innovation of the framework is that it connects the sparse-encoders from different layers by a sparse-to-dense module. The sparse-to-dense module is a composition of a local spatial pooling step and a low-dimensional embedding process, which takes advantage of the spatial smoothness information in the image. As a result, the new method is able to learn several levels of sparse representation of the image which capture features at a variety of abstraction levels and simultaneously preserve the spatial smoothness between the neighboring image patches. Combining the feature representations from multiple layers, DeepSC achieves the state-of-the-art performance on multiple object recognition tasks.Comment: 9 pages, submitted to ICL

    Pooling-Invariant Image Feature Learning

    Full text link
    Unsupervised dictionary learning has been a key component in state-of-the-art computer vision recognition architectures. While highly effective methods exist for patch-based dictionary learning, these methods may learn redundant features after the pooling stage in a given early vision architecture. In this paper, we offer a novel dictionary learning scheme to efficiently take into account the invariance of learned features after the spatial pooling stage. The algorithm is built on simple clustering, and thus enjoys efficiency and scalability. We discuss the underlying mechanism that justifies the use of clustering algorithms, and empirically show that the algorithm finds better dictionaries than patch-based methods with the same dictionary size
    • …
    corecore