2 research outputs found

    Spatial Filtering Pipeline Evaluation of Cortically Coupled Computer Vision System for Rapid Serial Visual Presentation

    Get PDF
    Rapid Serial Visual Presentation (RSVP) is a paradigm that supports the application of cortically coupled computer vision to rapid image search. In RSVP, images are presented to participants in a rapid serial sequence which can evoke Event-related Potentials (ERPs) detectable in their Electroencephalogram (EEG). The contemporary approach to this problem involves supervised spatial filtering techniques which are applied for the purposes of enhancing the discriminative information in the EEG data. In this paper we make two primary contributions to that field: 1) We propose a novel spatial filtering method which we call the Multiple Time Window LDA Beamformer (MTWLB) method; 2) we provide a comprehensive comparison of nine spatial filtering pipelines using three spatial filtering schemes namely, MTWLB, xDAWN, Common Spatial Pattern (CSP) and three linear classification methods Linear Discriminant Analysis (LDA), Bayesian Linear Regression (BLR) and Logistic Regression (LR). Three pipelines without spatial filtering are used as baseline comparison. The Area Under Curve (AUC) is used as an evaluation metric in this paper. The results reveal that MTWLB and xDAWN spatial filtering techniques enhance the classification performance of the pipeline but CSP does not. The results also support the conclusion that LR can be effective for RSVP based BCI if discriminative features are available

    Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation

    Get PDF
    There is a growing interest in using generative adversarial networks (GANs) to produce image content that is indistinguishable from real images as judged by a typical person. A number of GAN variants for this purpose have been proposed; however, evaluating GAN performance is inherently difficult because current methods for measuring the quality of their output are not always consistent with what a human perceives. We propose a novel approach that combines a brain-computer interface (BCI) with GANs to generate a measure we call Neuroscore, which closely mirrors the behavioral ground truth measured from participants tasked with discerning real from synthetic images. This technique we call a neuro-AI interface, as it provides an interface between a human’s neural systems and an AI process. In this paper, we first compare the three most widely used metrics in the literature for evaluating GANs in terms of visual quality and compare their outputs with human judgments. Secondly, we propose and demonstrate a novel approach using neural signals and rapid serial visual presentation (RSVP) that directly measures a human perceptual response to facial production quality, independent of a behavioral response measurement. The correlation between our proposed Neuroscore and human perceptual judgments has Pearson correlation statistics: r(48) = − 0.767, p = 2.089e − 10. We also present the bootstrap result for the correlation i.e., p ≤ 0.0001. Results show that our Neuroscore is more consistent with human judgment compared with the conventional metrics we evaluated. We conclude that neural signals have potential applications for high-quality, rapid evaluation of GANs in the context of visual image synthesis
    corecore