824,909 research outputs found
An Algorithm for Data Reorganization in a Multi-dimensional Index
In spatial databases, data are associated with spatial coordinates and are retrieved based on spatial proximity. A spatial database uses spatial indexes to optimize spatial queries. An essential ingredient for efficient spatial query processing is spatial clustering of data and reorganization of spatial data. Traditional clustering algorithms and reorganization utilities lack in performance and execution. To solve this problem we have developed an algorithm to convert a two dimensional spatial index into a single dimensional value and then a reorganization is done on the spatial data. This report describes this algorithm as well as various experiments to validate its effectiveness
W42 - a scalable spatial database system for holding Digital Elevation Models
The design of a scalable system for holding spatial data in general and digital elevation models (DEMs) in specific has to account for the characteristics of data from various application fields. The data can be heterogeneous in coverage, as well as in resolution, information content and quality. A database aiming at the representation of world-wide DEMs has to consider these differences in the design of the system with respect to the structure and the algorithms. The database system W42, which is presented in the work at hand, is a scalable spatial database system capable of holding, extracting, mosaicking, and fusing spatial data represented in raster- as well as in vector-format. Design aspects for this task can be specified as holding spatial data in unique data structures and providing unique access functions to the data. These are subject of this work as well as first experiences gained from the implementation of part of the extensions made for the TanDEM-X mission
The Impact of Global Clustering on Spatial Database Systems
Global clustering has rarely been investigated in
the area of spatial database systems although dramatic
performance improvements can be
achieved by using suitable techniques. In this paper,
we propose a simple approach to global clustering
called cluster organization. We will demonstrate
that this cluster organization leads to considerable
performance improvements without any
algorithmic overhead. Based on real geographic
data, we perform a detailed empirical performance
evaluation and compare the cluster organization
to other organization models not using global
clustering. We will show that global clustering
speeds up the processing of window queries as
well as spatial joins without decreasing the performance
of the insertion of new objects and of selective
queries such as point queries. The spatial
join is sped up by a factor of about 4, whereas
non-selective window queries are accelerated by
even higher speed up factors
Optimization of Spatial Joins Using Filters
When viewing present-day technical applications that rely on the use of database systems, one notices that new techniques must be integrated in database management systems to be able to support these applications efficiently. This paper discusses one of these techniques in the context of supporting a Geographic Information System. It is known that the use of filters on geometric objects has a significant impact on the processing of 2-way spatial join queries. For this purpose, filters require approximations of objects. Queries can be optimized by filtering data not with just one but with several filters. Existing join methods are based on a combination of filters and a spatial index. The index is used to reduce the cost of the filter step and to minimize the cost of retrieving geometric objects from disk.
In this paper we examine n-way spatial joins. Complex n-way spatial join queries require solving several 2-way joins of intermediate results. In this case, not only the profit gained from using both filters and spatial indices but also the additional cost due to using these techniques are examined. For 2-way joins of base relations these costs are considered part of physical database design. We focus on the criteria for mutually comparing filters and not on those for spatial indices. Important aspects of a multi-step filter-based n-way spatial join method are described together with performance experiments. The winning join method uses several filters with approximations that are constructed by rotating two parallel lines around the object
Efficient Processing of Spatial Joins Using R-Trees
Abstract: In this paper, we show that spatial joins are very suitable to be processed on a parallel hardware platform. The parallel system is equipped with a so-called shared virtual memory which is well-suited for the design and implementation of parallel spatial join algorithms. We start with an algorithm that consists of three phases: task creation, task assignment and parallel task execu-tion. In order to reduce CPU- and I/O-cost, the three phases are processed in a fashion that pre-serves spatial locality. Dynamic load balancing is achieved by splitting tasks into smaller ones and reassigning some of the smaller tasks to idle processors. In an experimental performance compar-ison, we identify the advantages and disadvantages of several variants of our algorithm. The most efficient one shows an almost optimal speed-up under the assumption that the number of disks is sufficiently large. Topics: spatial database systems, parallel database systems
Towards a Scalable Dynamic Spatial Database System
With the rise of GPS-enabled smartphones and other similar mobile devices,
massive amounts of location data are available. However, no scalable solutions
for soft real-time spatial queries on large sets of moving objects have yet
emerged. In this paper we explore and measure the limits of actual algorithms
and implementations regarding different application scenarios. And finally we
propose a novel distributed architecture to solve the scalability issues.Comment: (2012
- …
