13 research outputs found

    Pretrained Transformers for Text Ranking: BERT and Beyond

    Get PDF
    The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading

    Graph Neural Networks for Natural Language Processing: A Survey

    Full text link
    Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.Comment: 127 page

    Narrative comprehension through analogy: A study in cognitive modeling and narrative clustering

    Get PDF
    As the field of natural language processing improves and finds its way into everyday use its current limitations and shortcomings become all the more apparent. The next generation of NLP systems will need to be able to handle tasks at a higher level, drawing together information beyond the lexical and across sentence boundaries. To address this need, research into the field of discourse understanding has emerged as a current hot topic with special attention being drawn to narrative comprehension. We explore cognitive modeling and the application of derived measures of analogy to tasks in the discourse/narrative domains. First, we present improvements to the LISA model, a state-of-the-art cognitive model of analogy, increasing the model’s flexibility and robustness, extending the model’s functionality to include a probabilistic measure of belief, and presenting an algorithm for automatically producing the model’s encoding. Finally we test the utility of narrative analogy as a feature for the Story Cloze Task. We find that narrative analogy is a poor feature on its own, but as part of a composite model with sentiment analysis, it outperforms the best task-given baselines but under-performs state-of-the-art. More importantly, through failure analysis we find that narrative analogy, as conceptualized by the field, is insufficient for such tasks, and researchers must first be able to determine when an analogy should be drawn since simply finding all potential analogies proves insufficient

    Deep Open Representative Learning for Image and Text Classification

    Get PDF
    Title from PDF of title page viewed November 5, 2020Dissertation advisor: Yugyung LeeVitaIncludes bibliographical references (pages 257-289)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2020An essential goal of artificial intelligence is to support the knowledge discovery process from data to the knowledge that is useful in decision making. The challenges in the knowledge discovery process are typically due to the following reasons: First, the real-world data are typically noise, sparse, or derived from heterogeneous sources. Second, it is neither easy to build robust predictive models nor to validate them with such real-world data. Third, the `black-box' approach to deep learning models makes it hard to interpret what they produce. It is essential to bridge the gap between the models and their support in decisions with something potentially understandable and interpretable. To address the gap, we focus on designing critical representatives of the discovery process from data to the knowledge that can be used to perform reasoning. In this dissertation, a novel model named Class Representative Learning (CRL) is proposed, a class-based classifier designed with the following unique contributions in machine learning, specifically for image and text classification, i) The unique design of a latent feature vector, i.e., class representative, represents the abstract embedding space projects with the features extracted from a deep neural network learned from either images or text, ii) Parallel ZSL algorithms with class representative learning; iii) A novel projection-based inferencing method uses the vector space model to reconcile the dominant difference between the seen classes and unseen classes; iv) The relationships between CRs (Class Representatives) are represented as a CR Graph where a node represents a CR, and an edge represents the similarity between two CRs.Furthermore, we designed the CR-Graph model that aims to make the models explainable that is crucial for decision-making. Although this CR-Graph does not have full reasoning capability, it is equipped with the class representatives and their inter-dependent network formed through similar neighboring classes. Additionally, semantic information and external information are added to CR-Graph to make the decision more capable of dealing with real-world data. The automated semantic information's ability to the graph is illustrated with a case study of biomedical research through the ontology generation from text and ontology-to-ontology mapping.Introduction -- CRL: Class Representative Learning for Image Classification -- Class Representatives for Zero-shot Learning using Purely Visual Data -- MCDD: Multi-class Distribution Model for Large Scale Classification -- Zero Shot Learning for Text Classification using Class Representative Learning -- Visual Context Learning with Big Data Analytics -- Transformation from Publications to Ontology using Topic-based Assertion Discovery -- Ontology Mapping Framework with Feature Extraction and Semantic Embeddings -- Conclusion -- Appendix A. A Comparative Evaluation with Different Similarity Measure

    Robust speech recognition with spectrogram factorisation

    Get PDF
    Communication by speech is intrinsic for humans. Since the breakthrough of mobile devices and wireless communication, digital transmission of speech has become ubiquitous. Similarly distribution and storage of audio and video data has increased rapidly. However, despite being technically capable to record and process audio signals, only a fraction of digital systems and services are actually able to work with spoken input, that is, to operate on the lexical content of speech. One persistent obstacle for practical deployment of automatic speech recognition systems is inadequate robustness against noise and other interferences, which regularly corrupt signals recorded in real-world environments. Speech and diverse noises are both complex signals, which are not trivially separable. Despite decades of research and a multitude of different approaches, the problem has not been solved to a sufficient extent. Especially the mathematically ill-posed problem of separating multiple sources from a single-channel input requires advanced models and algorithms to be solvable. One promising path is using a composite model of long-context atoms to represent a mixture of non-stationary sources based on their spectro-temporal behaviour. Algorithms derived from the family of non-negative matrix factorisations have been applied to such problems to separate and recognise individual sources like speech. This thesis describes a set of tools developed for non-negative modelling of audio spectrograms, especially involving speech and real-world noise sources. An overview is provided to the complete framework starting from model and feature definitions, advancing to factorisation algorithms, and finally describing different routes for separation, enhancement, and recognition tasks. Current issues and their potential solutions are discussed both theoretically and from a practical point of view. The included publications describe factorisation-based recognition systems, which have been evaluated on publicly available speech corpora in order to determine the efficiency of various separation and recognition algorithms. Several variants and system combinations that have been proposed in literature are also discussed. The work covers a broad span of factorisation-based system components, which together aim at providing a practically viable solution to robust processing and recognition of speech in everyday situations

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF
    corecore