736 research outputs found

    Cut-Matching Games on Directed Graphs

    Full text link
    We give O(log^2 n)-approximation algorithm based on the cut-matching framework of [10, 13, 14] for computing the sparsest cut on directed graphs. Our algorithm uses only O(log^2 n) single commodity max-flow computations and thus breaks the multicommodity-flow barrier for computing the sparsest cut on directed graph

    Sparsest Cut on Bounded Treewidth Graphs: Algorithms and Hardness Results

    Full text link
    We give a 2-approximation algorithm for Non-Uniform Sparsest Cut that runs in time nO(k)n^{O(k)}, where kk is the treewidth of the graph. This improves on the previous 22k2^{2^k}-approximation in time \poly(n) 2^{O(k)} due to Chlamt\'a\v{c} et al. To complement this algorithm, we show the following hardness results: If the Non-Uniform Sparsest Cut problem has a ρ\rho-approximation for series-parallel graphs (where ρ1\rho \geq 1), then the Max Cut problem has an algorithm with approximation factor arbitrarily close to 1/ρ1/\rho. Hence, even for such restricted graphs (which have treewidth 2), the Sparsest Cut problem is NP-hard to approximate better than 17/16ϵ17/16 - \epsilon for ϵ>0\epsilon > 0; assuming the Unique Games Conjecture the hardness becomes 1/αGWϵ1/\alpha_{GW} - \epsilon. For graphs with large (but constant) treewidth, we show a hardness result of 2ϵ2 - \epsilon assuming the Unique Games Conjecture. Our algorithm rounds a linear program based on (a subset of) the Sherali-Adams lift of the standard Sparsest Cut LP. We show that even for treewidth-2 graphs, the LP has an integrality gap close to 2 even after polynomially many rounds of Sherali-Adams. Hence our approach cannot be improved even on such restricted graphs without using a stronger relaxation

    Approximating Non-Uniform Sparsest Cut via Generalized Spectra

    Full text link
    We give an approximation algorithm for non-uniform sparsest cut with the following guarantee: For any ϵ,δ(0,1)\epsilon,\delta \in (0,1), given cost and demand graphs with edge weights C,DC, D respectively, we can find a set TVT\subseteq V with C(T,VT)D(T,VT)\frac{C(T,V\setminus T)}{D(T,V\setminus T)} at most 1+ϵδ\frac{1+\epsilon}{\delta} times the optimal non-uniform sparsest cut value, in time 2^{r/(\delta\epsilon)}\poly(n) provided λrΦ/(1δ)\lambda_r \ge \Phi^*/(1-\delta). Here λr\lambda_r is the rr'th smallest generalized eigenvalue of the Laplacian matrices of cost and demand graphs; C(T,VT)C(T,V\setminus T) (resp. D(T,VT)D(T,V\setminus T)) is the weight of edges crossing the (T,VT)(T,V\setminus T) cut in cost (resp. demand) graph and Φ\Phi^* is the sparsity of the optimal cut. In words, we show that the non-uniform sparsest cut problem is easy when the generalized spectrum grows moderately fast. To the best of our knowledge, there were no results based on higher order spectra for non-uniform sparsest cut prior to this work. Even for uniform sparsest cut, the quantitative aspects of our result are somewhat stronger than previous methods. Similar results hold for other expansion measures like edge expansion, normalized cut, and conductance, with the rr'th smallest eigenvalue of the normalized Laplacian playing the role of λr\lambda_r in the latter two cases. Our proof is based on an l1-embedding of vectors from a semi-definite program from the Lasserre hierarchy. The embedded vectors are then rounded to a cut using standard threshold rounding. We hope that the ideas connecting 1\ell_1-embeddings to Lasserre SDPs will find other applications. Another aspect of the analysis is the adaptation of the column selection paradigm from our earlier work on rounding Lasserre SDPs [GS11] to pick a set of edges rather than vertices. This feature is important in order to extend the algorithms to non-uniform sparsest cut.Comment: 16 page

    Towards a better approximation for sparsest cut?

    Full text link
    We give a new (1+ϵ)(1+\epsilon)-approximation for sparsest cut problem on graphs where small sets expand significantly more than the sparsest cut (sets of size n/rn/r expand by a factor lognlogr\sqrt{\log n\log r} bigger, for some small rr; this condition holds for many natural graph families). We give two different algorithms. One involves Guruswami-Sinop rounding on the level-rr Lasserre relaxation. The other is combinatorial and involves a new notion called {\em Small Set Expander Flows} (inspired by the {\em expander flows} of ARV) which we show exists in the input graph. Both algorithms run in time 2O(r)poly(n)2^{O(r)} \mathrm{poly}(n). We also show similar approximation algorithms in graphs with genus gg with an analogous local expansion condition. This is the first algorithm we know of that achieves (1+ϵ)(1+\epsilon)-approximation on such general family of graphs

    Compression bounds for Lipschitz maps from the Heisenberg group to L1L_1

    Full text link
    We prove a quantitative bi-Lipschitz nonembedding theorem for the Heisenberg group with its Carnot-Carath\'eodory metric and apply it to give a lower bound on the integrality gap of the Goemans-Linial semidefinite relaxation of the Sparsest Cut problem

    A PRG for Lipschitz Functions of Polynomials with Applications to Sparsest Cut

    Full text link
    We give improved pseudorandom generators (PRGs) for Lipschitz functions of low-degree polynomials over the hypercube. These are functions of the form psi(P(x)), where P is a low-degree polynomial and psi is a function with small Lipschitz constant. PRGs for smooth functions of low-degree polynomials have received a lot of attention recently and play an important role in constructing PRGs for the natural class of polynomial threshold functions. In spite of the recent progress, no nontrivial PRGs were known for fooling Lipschitz functions of degree O(log n) polynomials even for constant error rate. In this work, we give the first such generator obtaining a seed-length of (log n)\tilde{O}(d^2/eps^2) for fooling degree d polynomials with error eps. Previous generators had an exponential dependence on the degree. We use our PRG to get better integrality gap instances for sparsest cut, a fundamental problem in graph theory with many applications in graph optimization. We give an instance of uniform sparsest cut for which a powerful semi-definite relaxation (SDP) first introduced by Goemans and Linial and studied in the seminal work of Arora, Rao and Vazirani has an integrality gap of exp(\Omega((log log n)^{1/2})). Understanding the performance of the Goemans-Linial SDP for uniform sparsest cut is an important open problem in approximation algorithms and metric embeddings and our work gives a near-exponential improvement over previous lower bounds which achieved a gap of \Omega(log log n)
    corecore