2 research outputs found

    Sparse sensing for composite matched subspace detection

    No full text
    In this paper, we propose sensor selection strategies, based on convex and greedy approaches, for designing sparse samplers for composite detection. Particularly, we focus our attention on sparse samplers for matched subspace detectors. Differently from previous works, that mostly rely on random matrices to perform compression of the sub-spaces, we show how deterministic samplers can be designed under a Neyman-Pearson-like setting when the generalized likelihood ratio test is used. For a less stringent case than the worst case design, we introduce a submodular cost that obtains comparable results with its convex counterpart, while having a linear time heuristic for its near optimal maximization.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Circuits and System

    Sparse sensing for composite matched subspace detection

    No full text
    In this paper, we propose sensor selection strategies, based on convex and greedy approaches, for designing sparse samplers for composite detection. Particularly, we focus our attention on sparse samplers for matched subspace detectors. Differently from previous works, that mostly rely on random matrices to perform compression of the sub-spaces, we show how deterministic samplers can be designed under a Neyman-Pearson-like setting when the generalized likelihood ratio test is used. For a less stringent case than the worst case design, we introduce a submodular cost that obtains comparable results with its convex counterpart, while having a linear time heuristic for its near optimal maximization.</p
    corecore