10,731 research outputs found

    Pathway-Based Genomics Prediction using Generalized Elastic Net.

    Get PDF
    We present a novel regularization scheme called The Generalized Elastic Net (GELnet) that incorporates gene pathway information into feature selection. The proposed formulation is applicable to a wide variety of problems in which the interpretation of predictive features using known molecular interactions is desired. The method naturally steers solutions toward sets of mechanistically interlinked genes. Using experiments on synthetic data, we demonstrate that pathway-guided results maintain, and often improve, the accuracy of predictors even in cases where the full gene network is unknown. We apply the method to predict the drug response of breast cancer cell lines. GELnet is able to reveal genetic determinants of sensitivity and resistance for several compounds. In particular, for an EGFR/HER2 inhibitor, it finds a possible trans-differentiation resistance mechanism missed by the corresponding pathway agnostic approach

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Structured penalized regression for drug sensitivity prediction

    Full text link
    Large-scale {\it in vitro} drug sensitivity screens are an important tool in personalized oncology to predict the effectiveness of potential cancer drugs. The prediction of the sensitivity of cancer cell lines to a panel of drugs is a multivariate regression problem with high-dimensional heterogeneous multi-omics data as input data and with potentially strong correlations between the outcome variables which represent the sensitivity to the different drugs. We propose a joint penalized regression approach with structured penalty terms which allow us to utilize the correlation structure between drugs with group-lasso-type penalties and at the same time address the heterogeneity between omics data sources by introducing data-source-specific penalty factors to penalize different data sources differently. By combining integrative penalty factors (IPF) with tree-guided group lasso, we create the IPF-tree-lasso method. We present a unified framework to transform more general IPF-type methods to the original penalized method. Because the structured penalty terms have multiple parameters, we demonstrate how the interval-search Efficient Parameter Selection via Global Optimization (EPSGO) algorithm can be used to optimize multiple penalty parameters efficiently. Simulation studies show that IPF-tree-lasso can improve the prediction performance compared to other lasso-type methods, in particular for heterogenous data sources. Finally, we employ the new methods to analyse data from the Genomics of Drug Sensitivity in Cancer project.Comment: Zhao Z, Zucknick M (2020). Structured penalized regression for drug sensitivity prediction. Journal of the Royal Statistical Society, Series C. 19 pages, 6 figures and 2 table

    Of mice and men: Sparse statistical modeling in cardiovascular genomics

    Full text link
    In high-throughput genomics, large-scale designed experiments are becoming common, and analysis approaches based on highly multivariate regression and anova concepts are key tools. Shrinkage models of one form or another can provide comprehensive approaches to the problems of simultaneous inference that involve implicit multiple comparisons over the many, many parameters representing effects of design factors and covariates. We use such approaches here in a study of cardiovascular genomics. The primary experimental context concerns a carefully designed, and rich, gene expression study focused on gene-environment interactions, with the goals of identifying genes implicated in connection with disease states and known risk factors, and in generating expression signatures as proxies for such risk factors. A coupled exploratory analysis investigates cross-species extrapolation of gene expression signatures--how these mouse-model signatures translate to humans. The latter involves exploration of sparse latent factor analysis of human observational data and of how it relates to projected risk signatures derived in the animal models. The study also highlights a range of applied statistical and genomic data analysis issues, including model specification, computational questions and model-based correction of experimental artifacts in DNA microarray data.Comment: Published at http://dx.doi.org/10.1214/07-AOAS110 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore