5,203 research outputs found

    Collaborative Representation based Classification for Face Recognition

    Full text link
    By coding a query sample as a sparse linear combination of all training samples and then classifying it by evaluating which class leads to the minimal coding residual, sparse representation based classification (SRC) leads to interesting results for robust face recognition. It is widely believed that the l1- norm sparsity constraint on coding coefficients plays a key role in the success of SRC, while its use of all training samples to collaboratively represent the query sample is rather ignored. In this paper we discuss how SRC works, and show that the collaborative representation mechanism used in SRC is much more crucial to its success of face classification. The SRC is a special case of collaborative representation based classification (CRC), which has various instantiations by applying different norms to the coding residual and coding coefficient. More specifically, the l1 or l2 norm characterization of coding residual is related to the robustness of CRC to outlier facial pixels, while the l1 or l2 norm characterization of coding coefficient is related to the degree of discrimination of facial features. Extensive experiments were conducted to verify the face recognition accuracy and efficiency of CRC with different instantiations.Comment: It is a substantial revision of a previous conference paper (L. Zhang, M. Yang, et al. "Sparse Representation or Collaborative Representation: Which Helps Face Recognition?" in ICCV 2011

    Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction

    Full text link
    It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.Comment: 33 pages, 12 figure
    • …
    corecore