2,072 research outputs found

    N-ary Error Correcting Coding Scheme

    Full text link
    The coding matrix design plays a fundamental role in the prediction performance of the error correcting output codes (ECOC)-based multi-class task. {In many-class classification problems, e.g., fine-grained categorization, it is difficult to distinguish subtle between-class differences under existing coding schemes due to a limited choices of coding values.} In this paper, we investigate whether one can relax existing binary and ternary code design to NN-ary code design to achieve better classification performance. {In particular, we present a novel NN-ary coding scheme that decomposes the original multi-class problem into simpler multi-class subproblems, which is similar to applying a divide-and-conquer method.} The two main advantages of such a coding scheme are as follows: (i) the ability to construct more discriminative codes and (ii) the flexibility for the user to select the best NN for ECOC-based classification. We show empirically that the optimal NN (based on classification performance) lies in [3,10][3, 10] with some trade-off in computational cost. Moreover, we provide theoretical insights on the dependency of the generalization error bound of an NN-ary ECOC on the average base classifier generalization error and the minimum distance between any two codes constructed. Extensive experimental results on benchmark multi-class datasets show that the proposed coding scheme achieves superior prediction performance over the state-of-the-art coding methods.Comment: Under submission to IEEE Transaction on Information Theor

    Discriminative Bayesian Dictionary Learning for Classification

    Full text link
    We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.Comment: 15 page

    Online Unsupervised Feature Learning for Visual Tracking

    Full text link
    Feature encoding with respect to an over-complete dictionary learned by unsupervised methods, followed by spatial pyramid pooling, and linear classification, has exhibited powerful strength in various vision applications. Here we propose to use the feature learning pipeline for visual tracking. Tracking is implemented using tracking-by-detection and the resulted framework is very simple yet effective. First, online dictionary learning is used to build a dictionary, which captures the appearance changes of the tracking target as well as the background changes. Given a test image window, we extract local image patches from it and each local patch is encoded with respect to the dictionary. The encoded features are then pooled over a spatial pyramid to form an aggregated feature vector. Finally, a simple linear classifier is trained on these features. Our experiments show that the proposed powerful---albeit simple---tracker, outperforms all the state-of-the-art tracking methods that we have tested. Moreover, we evaluate the performance of different dictionary learning and feature encoding methods in the proposed tracking framework, and analyse the impact of each component in the tracking scenario. We also demonstrate the flexibility of feature learning by plugging it into Hare et al.'s tracking method. The outcome is, to our knowledge, the best tracker ever reported, which facilitates the advantages of both feature learning and structured output prediction.Comment: 11 page

    Histopathologic Image Processing: A Review

    Full text link
    Histopathologic Images (HI) are the gold standard for evaluation of some tumors. However, the analysis of such images is challenging even for experienced pathologists, resulting in problems of inter and intra observer. Besides that, the analysis is time and resource consuming. One of the ways to accelerate such an analysis is by using Computer Aided Diagnosis systems. In this work we present a literature review about the computing techniques to process HI, including shallow and deep methods. We cover the most common tasks for processing HI such as segmentation, feature extraction, unsupervised learning and supervised learning. A dataset section show some datasets found during the literature review. We also bring a study case of breast cancer classification using a mix of deep and shallow machine learning methods. The proposed method obtained an accuracy of 91% in the best case, outperforming the compared baseline of the dataset

    Unsupervised High-level Feature Learning by Ensemble Projection for Semi-supervised Image Classification and Image Clustering

    Full text link
    This paper investigates the problem of image classification with limited or no annotations, but abundant unlabeled data. The setting exists in many tasks such as semi-supervised image classification, image clustering, and image retrieval. Unlike previous methods, which develop or learn sophisticated regularizers for classifiers, our method learns a new image representation by exploiting the distribution patterns of all available data for the task at hand. Particularly, a rich set of visual prototypes are sampled from all available data, and are taken as surrogate classes to train discriminative classifiers; images are projected via the classifiers; the projected values, similarities to the prototypes, are stacked to build the new feature vector. The training set is noisy. Hence, in the spirit of ensemble learning we create a set of such training sets which are all diverse, leading to diverse classifiers. The method is dubbed Ensemble Projection (EP). EP captures not only the characteristics of individual images, but also the relationships among images. It is conceptually simple and computationally efficient, yet effective and flexible. Experiments on eight standard datasets show that: (1) EP outperforms previous methods for semi-supervised image classification; (2) EP produces promising results for self-taught image classification, where unlabeled samples are a random collection of images rather than being from the same distribution as the labeled ones; and (3) EP improves over the original features for image clustering. The code of the method is available on the project page.Comment: 22 pages, 8 figure

    Transfer Adaptation Learning: A Decade Survey

    Full text link
    The world we see is ever-changing and it always changes with people, things, and the environment. Domain is referred to as the state of the world at a certain moment. A research problem is characterized as transfer adaptation learning (TAL) when it needs knowledge correspondence between different moments/domains. Conventional machine learning aims to find a model with the minimum expected risk on test data by minimizing the regularized empirical risk on the training data, which, however, supposes that the training and test data share similar joint probability distribution. TAL aims to build models that can perform tasks of target domain by learning knowledge from a semantic related but distribution different source domain. It is an energetic research filed of increasing influence and importance, which is presenting a blowout publication trend. This paper surveys the advances of TAL methodologies in the past decade, and the technical challenges and essential problems of TAL have been observed and discussed with deep insights and new perspectives. Broader solutions of transfer adaptation learning being created by researchers are identified, i.e., instance re-weighting adaptation, feature adaptation, classifier adaptation, deep network adaptation and adversarial adaptation, which are beyond the early semi-supervised and unsupervised split. The survey helps researchers rapidly but comprehensively understand and identify the research foundation, research status, theoretical limitations, future challenges and under-studied issues (universality, interpretability, and credibility) to be broken in the field toward universal representation and safe applications in open-world scenarios.Comment: 26 pages, 4 figure

    A Mixtures-of-Experts Framework for Multi-Label Classification

    Full text link
    We develop a novel probabilistic approach for multi-label classification that is based on the mixtures-of-experts architecture combined with recently introduced conditional tree-structured Bayesian networks. Our approach captures different input-output relations from multi-label data using the efficient tree-structured classifiers, while the mixtures-of-experts architecture aims to compensate for the tree-structured restrictions and build a more accurate model. We develop and present algorithms for learning the model from data and for performing multi-label predictions on future data instances. Experiments on multiple benchmark datasets demonstrate that our approach achieves highly competitive results and outperforms the existing state-of-the-art multi-label classification methods

    Correlated Logistic Model With Elastic Net Regularization for Multilabel Image Classification

    Full text link
    In this paper, we present correlated logistic (CorrLog) model for multilabel image classification. CorrLog extends conventional logistic regression model into multilabel cases, via explicitly modeling the pairwise correlation between labels. In addition, we propose to learn the model parameters of CorrLog with elastic net regularization, which helps exploit the sparsity in feature selection and label correlations and thus further boost the performance of multilabel classification. CorrLog can be efficiently learned, though approximately, by regularized maximum pseudo likelihood estimation, and it enjoys a satisfying generalization bound that is independent of the number of labels. CorrLog performs competitively for multilabel image classification on benchmark data sets MULAN scene, MIT outdoor scene, PASCAL VOC 2007, and PASCAL VOC 2012, compared with the state-of-the-art multilabel classification algorithms

    Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning

    Full text link
    Many typical applications of object detection operate within a prescribed false-positive range. In this situation the performance of a detector should be assessed on the basis of the area under the ROC curve over that range, rather than over the full curve, as the performance outside the range is irrelevant. This measure is labelled as the partial area under the ROC curve (pAUC). We propose a novel ensemble learning method which achieves a maximal detection rate at a user-defined range of false positive rates by directly optimizing the partial AUC using structured learning. In order to achieve a high object detection performance, we propose a new approach to extract low-level visual features based on spatial pooling. Incorporating spatial pooling improves the translational invariance and thus the robustness of the detection process. Experimental results on both synthetic and real-world data sets demonstrate the effectiveness of our approach, and we show that it is possible to train state-of-the-art pedestrian detectors using the proposed structured ensemble learning method with spatially pooled features. The result is the current best reported performance on the Caltech-USA pedestrian detection dataset.Comment: 19 page

    Text Classification Algorithms: A Survey

    Full text link
    In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed
    • …
    corecore