2 research outputs found

    Manufacturing Dispatching using Reinforcement and Transfer Learning

    Full text link
    Efficient dispatching rule in manufacturing industry is key to ensure product on-time delivery and minimum past-due and inventory cost. Manufacturing, especially in the developed world, is moving towards on-demand manufacturing meaning a high mix, low volume product mix. This requires efficient dispatching that can work in dynamic and stochastic environments, meaning it allows for quick response to new orders received and can work over a disparate set of shop floor settings. In this paper we address this problem of dispatching in manufacturing. Using reinforcement learning (RL), we propose a new design to formulate the shop floor state as a 2-D matrix, incorporate job slack time into state representation, and design lateness and tardiness rewards function for dispatching purpose. However, maintaining a separate RL model for each production line on a manufacturing shop floor is costly and often infeasible. To address this, we enhance our deep RL model with an approach for dispatching policy transfer. This increases policy generalization and saves time and cost for model training and data collection. Experiments show that: (1) our approach performs the best in terms of total discounted reward and average lateness, tardiness, (2) the proposed policy transfer approach reduces training time and increases policy generalization.Comment: ECML PKDD 2019 (The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2019

    Generative Adversarial Networks for Failure Prediction

    Full text link
    Prognostics and Health Management (PHM) is an emerging engineering discipline which is concerned with the analysis and prediction of equipment health and performance. One of the key challenges in PHM is to accurately predict impending failures in the equipment. In recent years, solutions for failure prediction have evolved from building complex physical models to the use of machine learning algorithms that leverage the data generated by the equipment. However, failure prediction problems pose a set of unique challenges that make direct application of traditional classification and prediction algorithms impractical. These challenges include the highly imbalanced training data, the extremely high cost of collecting more failure samples, and the complexity of the failure patterns. Traditional oversampling techniques will not be able to capture such complexity and accordingly result in overfitting the training data. This paper addresses these challenges by proposing a novel algorithm for failure prediction using Generative Adversarial Networks (GAN-FP). GAN-FP first utilizes two GAN networks to simultaneously generate training samples and build an inference network that can be used to predict failures for new samples. GAN-FP first adopts an infoGAN to generate realistic failure and non-failure samples, and initialize the weights of the first few layers of the inference network. The inference network is then tuned by optimizing a weighted loss objective using only real failure and non-failure samples. The inference network is further tuned using a second GAN whose purpose is to guarantee the consistency between the generated samples and corresponding labels. GAN-FP can be used for other imbalanced classification problems as well.Comment: ECML PKDD 2019 (The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2019
    corecore