4 research outputs found

    Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization

    Get PDF
    We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer’s law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach forreconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ℓ1-norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of theimage density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented

    Polychromatic X-ray CT Image Reconstruction and Mass-Attenuation Spectrum Estimation

    Full text link
    We develop a method for sparse image reconstruction from polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident-energy spectrum are unknown. We obtain a parsimonious measurement-model parameterization by changing the integral variable from photon energy to mass attenuation, which allows us to combine the variations brought by the unknown incident spectrum and mass attenuation into a single unknown mass-attenuation spectrum function; the resulting measurement equation has the Laplace integral form. The mass-attenuation spectrum is then expanded into first order B-spline basis functions. We derive a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood (NLL) cost function, where penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map. The image sparsity is imposed using total-variation (TV) and â„“1\ell_1 norms, applied to the density-map image and its discrete wavelet transform (DWT) coefficients, respectively. This algorithm alternates between Nesterov's proximal-gradient (NPG) and limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) steps for updating the image and mass-attenuation spectrum parameters. To accelerate convergence of the density-map NPG step, we apply a step-size selection scheme that accounts for varying local Lipschitz constant of the NLL. We consider lognormal and Poisson noise models and establish conditions for biconvexity of the corresponding NLLs. We also prove the Kurdyka-{\L}ojasiewicz property of the objective function, which is important for establishing local convergence of the algorithm. Numerical experiments with simulated and real X-ray CT data demonstrate the performance of the proposed scheme

    Sparse X-ray CT image reconstruction and blind beam hardening correction via mass attenuation discretization

    No full text
    We develop a nonlinear sparse X-ray computed tomography (CT) image reconstruction method that accounts for beam hardening effects due to polychromatic X-ray sources. We adopt the blind scenario where the material of the inspected object and the incident polychromatic source spectrum are unknown and apply mass attenuation discretization of the underlying integral expressions that model the noiseless measurements. Our reconstruction algorithm employs constrained minimization of a penalized least-squares cost function, where nonnegativity and maximum-energy constraints are imposed on incident spectrum parameters and negative-energy and smooth â„“1-norm penalty terms are introduced to ensure the nonnegativity and sparsity of the density map image. This minimization scheme alternates between a nonlinear conjugate-gradient step for estimating the density map image and an active set step for estimating incident spectrum parameters. We compare the proposed method with the existing approaches, which ignore the polychromatic nature of the measurements or sparsity of the density map image.This is a manuscript of an article from 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2013, 4pp.</p

    Sparse X-ray CT image reconstruction and blind beam hardening correction via mass attenuation discretization

    No full text
    We develop a nonlinear sparse X-ray computed tomography (CT) image reconstruction method that accounts for beam hardening effects due to polychromatic X-ray sources. We adopt the blind scenario where the material of the inspected object and the incident polychromatic source spectrum are unknown and apply mass attenuation discretization of the underlying integral expressions that model the noiseless measurements. Our reconstruction algorithm employs constrained minimization of a penalized least-squares cost function, where nonnegativity and maximum-energy constraints are imposed on incident spectrum parameters and negative-energy and smooth â„“1-norm penalty terms are introduced to ensure the nonnegativity and sparsity of the density map image. This minimization scheme alternates between a nonlinear conjugate-gradient step for estimating the density map image and an active set step for estimating incident spectrum parameters. We compare the proposed method with the existing approaches, which ignore the polychromatic nature of the measurements or sparsity of the density map image.This is a manuscript of an article from 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2013, 4pp.</p
    corecore