6,706 research outputs found

    Jointly Sparse Support Recovery via Deep Auto-encoder with Applications in MIMO-based Grant-Free Random Access for mMTC

    Full text link
    In this paper, a data-driven approach is proposed to jointly design the common sensing (measurement) matrix and jointly support recovery method for complex signals, using a standard deep auto-encoder for real numbers. The auto-encoder in the proposed approach includes an encoder that mimics the noisy linear measurement process for jointly sparse signals with a common sensing matrix, and a decoder that approximately performs jointly sparse support recovery based on the empirical covariance matrix of noisy linear measurements. The proposed approach can effectively utilize the feature of common support and properties of sparsity patterns to achieve high recovery accuracy, and has significantly shorter computation time than existing methods. We also study an application example, i.e., device activity detection in Multiple-Input Multiple-Output (MIMO)-based grant-free random access for massive machine type communications (mMTC). The numerical results show that the proposed approach can provide pilot sequences and device activity detection with better detection accuracy and substantially shorter computation time than well-known recovery methods.Comment: 5 pages, 8 figures, to be publised in IEEE SPAWC 2020. arXiv admin note: text overlap with arXiv:2002.0262

    Compressive Sensing-Based Grant-Free Massive Access for 6G Massive Communication

    Full text link
    The advent of the sixth-generation (6G) of wireless communications has given rise to the necessity to connect vast quantities of heterogeneous wireless devices, which requires advanced system capabilities far beyond existing network architectures. In particular, such massive communication has been recognized as a prime driver that can empower the 6G vision of future ubiquitous connectivity, supporting Internet of Human-Machine-Things for which massive access is critical. This paper surveys the most recent advances toward massive access in both academic and industry communities, focusing primarily on the promising compressive sensing-based grant-free massive access paradigm. We first specify the limitations of existing random access schemes and reveal that the practical implementation of massive communication relies on a dramatically different random access paradigm from the current ones mainly designed for human-centric communications. Then, a compressive sensing-based grant-free massive access roadmap is presented, where the evolutions from single-antenna to large-scale antenna array-based base stations, from single-station to cooperative massive multiple-input multiple-output systems, and from unsourced to sourced random access scenarios are detailed. Finally, we discuss the key challenges and open issues to shed light on the potential future research directions of grant-free massive access.Comment: Accepted by IEEE IoT Journa

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed
    • …
    corecore