65,298 research outputs found
Sparse Overcomplete Word Vector Representations
Current distributed representations of words show little resemblance to
theories of lexical semantics. The former are dense and uninterpretable, the
latter largely based on familiar, discrete classes (e.g., supersenses) and
relations (e.g., synonymy and hypernymy). We propose methods that transform
word vectors into sparse (and optionally binary) vectors. The resulting
representations are more similar to the interpretable features typically used
in NLP, though they are discovered automatically from raw corpora. Because the
vectors are highly sparse, they are computationally easy to work with. Most
importantly, we find that they outperform the original vectors on benchmark
tasks.Comment: Proceedings of ACL 201
Multimodal Sparse Coding for Event Detection
Unsupervised feature learning methods have proven effective for
classification tasks based on a single modality. We present multimodal sparse
coding for learning feature representations shared across multiple modalities.
The shared representations are applied to multimedia event detection (MED) and
evaluated in comparison to unimodal counterparts, as well as other feature
learning methods such as GMM supervectors and sparse RBM. We report the
cross-validated classification accuracy and mean average precision of the MED
system trained on features learned from our unimodal and multimodal settings
for a subset of the TRECVID MED 2014 dataset.Comment: Multimodal Machine Learning Workshop at NIPS 201
A survey of sparse representation: algorithms and applications
Sparse representation has attracted much attention from researchers in fields
of signal processing, image processing, computer vision and pattern
recognition. Sparse representation also has a good reputation in both
theoretical research and practical applications. Many different algorithms have
been proposed for sparse representation. The main purpose of this article is to
provide a comprehensive study and an updated review on sparse representation
and to supply a guidance for researchers. The taxonomy of sparse representation
methods can be studied from various viewpoints. For example, in terms of
different norm minimizations used in sparsity constraints, the methods can be
roughly categorized into five groups: sparse representation with -norm
minimization, sparse representation with -norm (0p1) minimization,
sparse representation with -norm minimization and sparse representation
with -norm minimization. In this paper, a comprehensive overview of
sparse representation is provided. The available sparse representation
algorithms can also be empirically categorized into four groups: greedy
strategy approximation, constrained optimization, proximity algorithm-based
optimization, and homotopy algorithm-based sparse representation. The
rationales of different algorithms in each category are analyzed and a wide
range of sparse representation applications are summarized, which could
sufficiently reveal the potential nature of the sparse representation theory.
Specifically, an experimentally comparative study of these sparse
representation algorithms was presented. The Matlab code used in this paper can
be available at: http://www.yongxu.org/lunwen.html.Comment: Published on IEEE Access, Vol. 3, pp. 490-530, 201
SPINE: SParse Interpretable Neural Embeddings
Prediction without justification has limited utility. Much of the success of
neural models can be attributed to their ability to learn rich, dense and
expressive representations. While these representations capture the underlying
complexity and latent trends in the data, they are far from being
interpretable. We propose a novel variant of denoising k-sparse autoencoders
that generates highly efficient and interpretable distributed word
representations (word embeddings), beginning with existing word representations
from state-of-the-art methods like GloVe and word2vec. Through large scale
human evaluation, we report that our resulting word embedddings are much more
interpretable than the original GloVe and word2vec embeddings. Moreover, our
embeddings outperform existing popular word embeddings on a diverse suite of
benchmark downstream tasks.Comment: AAAI 201
Block Orthonormal Overcomplete Dictionary Learning
In the field of sparse representations, the overcomplete dictionary learning problem is of crucial importance and has a growing application pool where it is used. In this paper we present an iterative dictionary learning algorithm based on the singular value decomposition that efficiently construct unions of orthonormal bases. The important innovation described in this paper, that affects positively the running time of the learning procedures, is the way in which the sparse representations are computed - data are reconstructed in a single orthonormal base, avoiding slow sparse approximation algorithms - how the bases in the union are used and updated individually and how the union itself is expanded by looking at the worst reconstructed data items. The numerical experiments show conclusively the speedup induced by our method when compared to previous works, for the same target representation
error
A group sparsity-driven approach to 3-D action recognition
In this paper, a novel 3-D action recognition method based on sparse representation is presented. Silhouette images from multiple cameras are combined to obtain motion history volumes (MHVs). Cylindrical Fourier transform of MHVs is used as action descriptors. We assume that a test sample has a sparse representation in the space of training samples. We cast the action classification problem as an optimization problem and classify actions using group sparsity based on l1 regularization. We show experimental results using the IXMAS multi-view database and demonstratethe superiority of our method, especially when observations are low resolution, occluded, and noisy and when
the feature dimension is reduced
Group Sparse CNNs for Question Classification with Answer Sets
Question classification is an important task with wide applications. However,
traditional techniques treat questions as general sentences, ignoring the
corresponding answer data. In order to consider answer information into
question modeling, we first introduce novel group sparse autoencoders which
refine question representation by utilizing group information in the answer
set. We then propose novel group sparse CNNs which naturally learn question
representation with respect to their answers by implanting group sparse
autoencoders into traditional CNNs. The proposed model significantly outperform
strong baselines on four datasets.Comment: 6, ACL 201
- …
