9,030 research outputs found

    Variational Data Assimilation via Sparse Regularization

    Get PDF
    This paper studies the role of sparse regularization in a properly chosen basis for variational data assimilation (VDA) problems. Specifically, it focuses on data assimilation of noisy and down-sampled observations while the state variable of interest exhibits sparsity in the real or transformed domain. We show that in the presence of sparsity, the 1\ell_{1}-norm regularization produces more accurate and stable solutions than the classic data assimilation methods. To motivate further developments of the proposed methodology, assimilation experiments are conducted in the wavelet and spectral domain using the linear advection-diffusion equation

    Image Deblurring and Super-resolution by Adaptive Sparse Domain Selection and Adaptive Regularization

    Full text link
    As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of l1-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of example image patches, and then for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the image local structures. Second, the image non-local self-similarity is introduced as another regularization term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration performance. Extensive experiments on image deblurring and super-resolution validate that by using adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better results than many state-of-the-art algorithms in terms of both PSNR and visual perception.Comment: 35 pages. This paper is under review in IEEE TI

    Searching for non-gaussianity: Statistical tests

    Get PDF
    Non-gaussianity represents the statistical signature of physical processes such as turbulence. It can also be used as a powerful tool to discriminate between competing cosmological scenarios. A canonical analysis of non-gaussianity is based on the study of the distribution of the signal in the real (or direct) space (e.g. brightness, temperature). This work presents an image processing method in which we propose statistical tests to indicate and quantify the non-gaussian nature of a signal. Our method is based on a wavelet analysis of a signal. Because the temperature or brightness distribution is a rather weak discriminator, the search for the statistical signature of non-gaussianity relies on the study of the coefficient distribution of an image in the wavelet decomposition basis which is much more sensitive. We develop two statistical tests for non-gaussianity. In order to test their reliability, we apply them to sets of test maps representing a combination of gaussian and non-gaussian signals. We deliberately choose a signal with a weak non-gaussian signature and we find that such a non-gaussian signature is easily detected using our statistical discriminators. In a second paper, we apply the tests in a cosmological context.Comment: 14 pages, 7 figures, in press in Astronomy & Astrophysics Supplement Serie
    corecore