136 research outputs found

    Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

    Full text link
    Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model (HSCM), belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or WW-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit

    Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

    Full text link
    Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model (HSCM), belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or WW-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit

    Projective, Sparse, and Learnable Latent Position Network Models

    Full text link
    When modeling network data using a latent position model, it is typical to assume that the nodes' positions are independently and identically distributed. However, this assumption implies the average node degree grows linearly with the number of nodes, which is inappropriate when the graph is thought to be sparse. We propose an alternative assumption---that the latent positions are generated according to a Poisson point process---and show that it is compatible with various levels of sparsity. Unlike other notions of sparse latent position models in the literature, our framework also defines a projective sequence of probability models, thus ensuring consistency of statistical inference across networks of different sizes. We establish conditions for consistent estimation of the latent positions, and compare our results to existing frameworks for modeling sparse networks.Comment: 51 pages, 2 figure

    On sparsity, power-law and clustering properties of graphex processes

    Full text link
    This paper investigates properties of the class of graphs based on exchangeable point processes. We provide asymptotic expressions for the number of edges, number of nodes and degree distributions, identifying four regimes: (i) a dense regime, (ii) a sparse almost dense regime, (iii) a sparse regime with power-law behaviour, and (iv) an almost extremely sparse regime. We show that under mild assumptions, both the global and local clustering coefficients converge to constants which may or may not be the same. We also derive a central limit theorem for the number of nodes. Finally, we propose a class of models within this framework where one can separately control the latent structure and the global sparsity/power-law properties of the graph
    corecore