8,661 research outputs found

    Sparsity-Promoting Bayesian Dynamic Linear Models

    Get PDF
    Sparsity-promoting priors have become increasingly popular over recent years due to an increased number of regression and classification applications involving a large number of predictors. In time series applications where observations are collected over time, it is often unrealistic to assume that the underlying sparsity pattern is fixed. We propose here an original class of flexible Bayesian linear models for dynamic sparsity modelling. The proposed class of models expands upon the existing Bayesian literature on sparse regression using generalized multivariate hyperbolic distributions. The properties of the models are explored through both analytic results and simulation studies. We demonstrate the model on a financial application where it is shown that it accurately represents the patterns seen in the analysis of stock and derivative data, and is able to detect major events by filtering an artificial portfolio of assets

    A Hierarchical Bayesian Framework for Constructing Sparsity-inducing Priors

    Full text link
    Variable selection techniques have become increasingly popular amongst statisticians due to an increased number of regression and classification applications involving high-dimensional data where we expect some predictors to be unimportant. In this context, Bayesian variable selection techniques involving Markov chain Monte Carlo exploration of the posterior distribution over models can be prohibitively computationally expensive and so there has been attention paid to quasi-Bayesian approaches such as maximum a posteriori (MAP) estimation using priors that induce sparsity in such estimates. We focus on this latter approach, expanding on the hierarchies proposed to date to provide a Bayesian interpretation and generalization of state-of-the-art penalized optimization approaches and providing simultaneously a natural way to include prior information about parameters within this framework. We give examples of how to use this hierarchy to compute MAP estimates for linear and logistic regression as well as sparse precision-matrix estimates in Gaussian graphical models. In addition, an adaptive group lasso method is derived using the framework.Comment: Submitted for publication; corrected typo
    • …
    corecore