24 research outputs found

    Joint Sparsity with Different Measurement Matrices

    Full text link
    We consider a generalization of the multiple measurement vector (MMV) problem, where the measurement matrices are allowed to differ across measurements. This problem arises naturally when multiple measurements are taken over time, e.g., and the measurement modality (matrix) is time-varying. We derive probabilistic recovery guarantees showing that---under certain (mild) conditions on the measurement matrices---l2/l1-norm minimization and a variant of orthogonal matching pursuit fail with a probability that decays exponentially in the number of measurements. This allows us to conclude that, perhaps surprisingly, recovery performance does not suffer from the individual measurements being taken through different measurement matrices. What is more, recovery performance typically benefits (significantly) from diversity in the measurement matrices; we specify conditions under which such improvements are obtained. These results continue to hold when the measurements are subject to (bounded) noise.Comment: Allerton 201

    The Sparsity Gap: Uncertainty Principles Proportional to Dimension

    Get PDF
    In an incoherent dictionary, most signals that admit a sparse representation admit a unique sparse representation. In other words, there is no way to express the signal without using strictly more atoms. This work demonstrates that sparse signals typically enjoy a higher privilege: each nonoptimal representation of the signal requires far more atoms than the sparsest representation-unless it contains many of the same atoms as the sparsest representation. One impact of this finding is to confer a certain degree of legitimacy on the particular atoms that appear in a sparse representation. This result can also be viewed as an uncertainty principle for random sparse signals over an incoherent dictionary.Comment: 6 pages. To appear in the Proceedings of the 44th Ann. IEEE Conf. on Information Sciences and System

    Conditioning of Random Block Subdictionaries with Applications to Block-Sparse Recovery and Regression

    Full text link
    The linear model, in which a set of observations is assumed to be given by a linear combination of columns of a matrix, has long been the mainstay of the statistics and signal processing literature. One particular challenge for inference under linear models is understanding the conditions on the dictionary under which reliable inference is possible. This challenge has attracted renewed attention in recent years since many modern inference problems deal with the "underdetermined" setting, in which the number of observations is much smaller than the number of columns in the dictionary. This paper makes several contributions for this setting when the set of observations is given by a linear combination of a small number of groups of columns of the dictionary, termed the "block-sparse" case. First, it specifies conditions on the dictionary under which most block subdictionaries are well conditioned. This result is fundamentally different from prior work on block-sparse inference because (i) it provides conditions that can be explicitly computed in polynomial time, (ii) the given conditions translate into near-optimal scaling of the number of columns of the block subdictionaries as a function of the number of observations for a large class of dictionaries, and (iii) it suggests that the spectral norm and the quadratic-mean block coherence of the dictionary (rather than the worst-case coherences) fundamentally limit the scaling of dimensions of the well-conditioned block subdictionaries. Second, this paper investigates the problems of block-sparse recovery and block-sparse regression in underdetermined settings. Near-optimal block-sparse recovery and regression are possible for certain dictionaries as long as the dictionary satisfies easily computable conditions and the coefficients describing the linear combination of groups of columns can be modeled through a mild statistical prior.Comment: 39 pages, 3 figures. A revised and expanded version of the paper published in IEEE Transactions on Information Theory (DOI: 10.1109/TIT.2015.2429632); this revision includes corrections in the proofs of some of the result

    A unified approach to model selection and sparse recovery using regularized least squares

    Full text link
    Model selection and sparse recovery are two important problems for which many regularization methods have been proposed. We study the properties of regularization methods in both problems under the unified framework of regularized least squares with concave penalties. For model selection, we establish conditions under which a regularized least squares estimator enjoys a nonasymptotic property, called the weak oracle property, where the dimensionality can grow exponentially with sample size. For sparse recovery, we present a sufficient condition that ensures the recoverability of the sparsest solution. In particular, we approach both problems by considering a family of penalties that give a smooth homotopy between L0L_0 and L1L_1 penalties. We also propose the sequentially and iteratively reweighted squares (SIRS) algorithm for sparse recovery. Numerical studies support our theoretical results and demonstrate the advantage of our new methods for model selection and sparse recovery.Comment: Published in at http://dx.doi.org/10.1214/09-AOS683 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore