67 research outputs found

    Quaternionic 1-Factorizations and Complete Sets of Rainbow Spanning Trees

    Get PDF
    A 1-factorization F of a complete graph K2n is said to be G-regular, or regular under G, if G is an automorphism group of F acting sharply transitively on the vertex-set. The problem of determining which groups can realize such a situation dates back to a result by Hartman and Rosa (Eur J Comb 6:45–48, 1985) on cyclic groups and it is still open when n is even, although several classes of groups were tested in the recent past. It has been recently proved, see Rinaldi (Australas J Comb 80(2):178–196, 2021) and Mazzuoccolo et al. (Discret Math 342(4):1006–1016, 2019), that a G-regular 1-factorization, together with a complete set of rainbow spanning trees, exists for each group G of order 2n, n odd. The existence for each even n>2 was proved when either G is cyclic and n is not a power of 2, or when G is a dihedral group. Explicit constructions were given in all these cases. In this paper we extend this result and give explicit constructions when n>2 is even and G is either abelian but not cyclic, dicyclic, or a non cyclic 2-group with a cyclic subgroup of index 2

    Tree Graphs and Orthogonal Spanning Tree Decompositions

    Get PDF
    Given a graph G, we construct T(G), called the tree graph of G. The vertices of T(G) are the spanning trees of G, with edges between vertices when their respective spanning trees differ only by a single edge. In this paper we detail many new results concerning tree graphs, involving topics such as clique decomposition, planarity, and automorphism groups. We also investigate and present a number of new results on orthogonal tree decompositions of complete graphs

    Robust exact and inexact FETI-DP methods with applications to elasticity

    Get PDF
    Gebietszerlegungsverfahren sind parallele, iterative Lösungsverfahren für grosse Gleichungssysteme, die bei der Diskretisierung von partiellen Differentialgleichungen, etwa aus der Strukturmechanik, entstehen. In dieser Arbeit werden duale, iterative Substrukturierungsverfahren vom FETI-DP-Typ (Finite Element Tearing and Interconnecting Dual-Primal) entwickelt und auf elliptische partielle Differentialgleichungen zweiter Ordnung angewandt. Insbesondere wird versucht, robuste Verfahren für homogene und heterogene Elastizitaetsprobleme zu entwickeln. Ebenso werden neue, inexakte FETI-DP-Verfahren vorgestellt, die eine inexakte Lösung des Grobgitterproblems und/oder der Teilgebietsprobleme erlauben. Es wird gezeigt, dass die neuen Algorithmen unter bestimmten Voraussetzungen Abschätzungen der gleichen asymptotischen Güte wie das klassische, exakte FETI-DP-Verfahren erfüllen. Parallele Resultate unter Verwendung von algebraischen Mehrgitter für das Grobgitterproblem zeigen die verbesserte Skalierbarkeit der neuen Algorithmen.Domain decomposition methods are fast parallel solvers for large equation systems arising from the discretisation of partial differential equations, e.g. from structural mechanics. In this work, dual iterative substructuring methods of the FETI-DP (Finite Element Tearing and Interconnecting Dual-Primal) type are developed and applied to second order elliptic problems with emphasis on elasticity. An attempt is made to develop robust methods for homogeneous and heterogeneous problems. New inexact FETI-DP methods are also introduced that allow for inexact coarse problem solvers and/or inexact subdomain solvers. It is shown that under certain conditions the new algorithms fulfill the same asymptotic condition number estimate as the traditional, exact FETI-DP methods. Parallel results using algebraic multigrid for the FETI-DP coarse problem show the improved scalability of the new algorithms

    RISE: An Incremental Trust-Region Method for Robust Online Sparse Least-Squares Estimation

    Get PDF
    Many point estimation problems in robotics, computer vision, and machine learning can be formulated as instances of the general problem of minimizing a sparse nonlinear sum-of-squares objective function. For inference problems of this type, each input datum gives rise to a summand in the objective function, and therefore performing online inference corresponds to solving a sequence of sparse nonlinear least-squares minimization problems in which additional summands are added to the objective function over time. In this paper, we present Robust Incremental least-Squares Estimation (RISE), an incrementalized version of the Powell's Dog-Leg numerical optimization method suitable for use in online sequential sparse least-squares minimization. As a trust-region method, RISE is naturally robust to objective function nonlinearity and numerical ill-conditioning and is provably globally convergent for a broad class of inferential cost functions (twice-continuously differentiable functions with bounded sublevel sets). Consequently, RISE maintains the speed of current state-of-the-art online sparse least-squares methods while providing superior reliability.United States. Office of Naval Research (Grant N00014-12-1-0093)United States. Office of Naval Research (Grant N00014-11-1-0688)United States. Office of Naval Research (Grant N00014-06-1-0043)United States. Office of Naval Research (Grant N00014-10-1-0936)United States. Air Force Research Laboratory (Contract FA8650-11-C-7137

    Subject Index Volumes 1–200

    Get PDF

    Tensor-based regression models and applications

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2017-2018Avec l’avancement des technologies modernes, les tenseurs d’ordre élevé sont assez répandus et abondent dans un large éventail d’applications telles que la neuroscience informatique, la vision par ordinateur, le traitement du signal et ainsi de suite. La principale raison pour laquelle les méthodes de régression classiques ne parviennent pas à traiter de façon appropriée des tenseurs d’ordre élevé est due au fait que ces données contiennent des informations structurelles multi-voies qui ne peuvent pas être capturées directement par les modèles conventionnels de régression vectorielle ou matricielle. En outre, la très grande dimensionnalité de l’entrée tensorielle produit une énorme quantité de paramètres, ce qui rompt les garanties théoriques des approches de régression classique. De plus, les modèles classiques de régression se sont avérés limités en termes de difficulté d’interprétation, de sensibilité au bruit et d’absence d’unicité. Pour faire face à ces défis, nous étudions une nouvelle classe de modèles de régression, appelés modèles de régression tensor-variable, où les prédicteurs indépendants et (ou) les réponses dépendantes prennent la forme de représentations tensorielles d’ordre élevé. Nous les appliquons également dans de nombreuses applications du monde réel pour vérifier leur efficacité et leur efficacité.With the advancement of modern technologies, high-order tensors are quite widespread and abound in a broad range of applications such as computational neuroscience, computer vision, signal processing and so on. The primary reason that classical regression methods fail to appropriately handle high-order tensors is due to the fact that those data contain multiway structural information which cannot be directly captured by the conventional vector-based or matrix-based regression models, causing substantial information loss during the regression. Furthermore, the ultrahigh dimensionality of tensorial input produces huge amount of parameters, which breaks the theoretical guarantees of classical regression approaches. Additionally, the classical regression models have also been shown to be limited in terms of difficulty of interpretation, sensitivity to noise and absence of uniqueness. To deal with these challenges, we investigate a novel class of regression models, called tensorvariate regression models, where the independent predictors and (or) dependent responses take the form of high-order tensorial representations. We also apply them in numerous real-world applications to verify their efficiency and effectiveness. Concretely, we first introduce hierarchical Tucker tensor regression, a generalized linear tensor regression model that is able to handle potentially much higher order tensor input. Then, we work on online local Gaussian process for tensor-variate regression, an efficient nonlinear GPbased approach that can process large data sets at constant time in a sequential way. Next, we present a computationally efficient online tensor regression algorithm with general tensorial input and output, called incremental higher-order partial least squares, for the setting of infinite time-dependent tensor streams. Thereafter, we propose a super-fast sequential tensor regression framework for general tensor sequences, namely recursive higher-order partial least squares, which addresses issues of limited storage space and fast processing time allowed by dynamic environments. Finally, we introduce kernel-based multiblock tensor partial least squares, a new generalized nonlinear framework that is capable of predicting a set of tensor blocks by merging a set of tensor blocks from different sources with a boosted predictive power

    Robust object detection under partial occlusion

    Full text link
    This thesis focuses on the problem of object detection under partial occlusion in complex scenes through exploring new bottom-up and top-down detection models to cope with object discontinuities and ambiguity caused by partial occlusion and allow for a more robust and adaptive detection of varied objects from different scenes

    Efficient Structure and Motion: Path Planning, Uncertainty and Sparsity

    Get PDF
    This thesis explores methods for solving the structure-and-motion problem in computer vision, the recovery of three-dimensional data from a series of two-dimensional image projections. The first paper investigates an alternative state space parametrization for use with the Kalman filter approach to simultaneous localization and mapping, and shows it has superior convergence properties compared with the state-of-the-art. The second paper presents a continuous optimization method for mobile robot path planning, designed to minimize the uncertainty of the geometry reconstructed from images taken by the robot. Similar concepts are applied in the third paper to the problem of sequential 3D reconstruction from unordered image sequences, resulting in increased robustness, accuracy and a reduced need for costly bundle adjustment operations. In the final paper, a method for efficient solution of bundle adjustment problems based on a junction tree decomposition is presented, exploiting the sparseness patterns in typical structure-and-motion input data
    • …
    corecore