3,474 research outputs found

    Space--Time Tradeoffs for Subset Sum: An Improved Worst Case Algorithm

    Full text link
    The technique of Schroeppel and Shamir (SICOMP, 1981) has long been the most efficient way to trade space against time for the SUBSET SUM problem. In the random-instance setting, however, improved tradeoffs exist. In particular, the recently discovered dissection method of Dinur et al. (CRYPTO 2012) yields a significantly improved space--time tradeoff curve for instances with strong randomness properties. Our main result is that these strong randomness assumptions can be removed, obtaining the same space--time tradeoffs in the worst case. We also show that for small space usage the dissection algorithm can be almost fully parallelized. Our strategy for dealing with arbitrary instances is to instead inject the randomness into the dissection process itself by working over a carefully selected but random composite modulus, and to introduce explicit space--time controls into the algorithm by means of a "bailout mechanism"

    Finding the Median (Obliviously) with Bounded Space

    Full text link
    We prove that any oblivious algorithm using space SS to find the median of a list of nn integers from {1,...,2n}\{1,...,2n\} requires time Ω(nloglogSn)\Omega(n \log\log_S n). This bound also applies to the problem of determining whether the median is odd or even. It is nearly optimal since Chan, following Munro and Raman, has shown that there is a (randomized) selection algorithm using only ss registers, each of which can store an input value or O(logn)O(\log n)-bit counter, that makes only O(loglogsn)O(\log\log_s n) passes over the input. The bound also implies a size lower bound for read-once branching programs computing the low order bit of the median and implies the analog of PNPcoNPP \ne NP \cap coNP for length o(nloglogn)o(n \log\log n) oblivious branching programs

    Solving kk-SUM using few linear queries

    Full text link
    The kk-SUM problem is given nn input real numbers to determine whether any kk of them sum to zero. The problem is of tremendous importance in the emerging field of complexity theory within PP, and it is in particular open whether it admits an algorithm of complexity O(nc)O(n^c) with c<k2c<\lceil \frac{k}{2} \rceil. Inspired by an algorithm due to Meiser (1993), we show that there exist linear decision trees and algebraic computation trees of depth O(n3log3n)O(n^3\log^3 n) solving kk-SUM. Furthermore, we show that there exists a randomized algorithm that runs in O~(nk2+8)\tilde{O}(n^{\lceil \frac{k}{2} \rceil+8}) time, and performs O(n3log3n)O(n^3\log^3 n) linear queries on the input. Thus, we show that it is possible to have an algorithm with a runtime almost identical (up to the +8+8) to the best known algorithm but for the first time also with the number of queries on the input a polynomial that is independent of kk. The O(n3log3n)O(n^3\log^3 n) bound on the number of linear queries is also a tighter bound than any known algorithm solving kk-SUM, even allowing unlimited total time outside of the queries. By simultaneously achieving few queries to the input without significantly sacrificing runtime vis-\`{a}-vis known algorithms, we deepen the understanding of this canonical problem which is a cornerstone of complexity-within-PP. We also consider a range of tradeoffs between the number of terms involved in the queries and the depth of the decision tree. In particular, we prove that there exist o(n)o(n)-linear decision trees of depth o(n4)o(n^4)

    Mean-Variance Optimization in Markov Decision Processes

    Get PDF
    We consider finite horizon Markov decision processes under performance measures that involve both the mean and the variance of the cumulative reward. We show that either randomized or history-based policies can improve performance. We prove that the complexity of computing a policy that maximizes the mean reward under a variance constraint is NP-hard for some cases, and strongly NP-hard for others. We finally offer pseudopolynomial exact and approximation algorithms.Comment: A full version of an ICML 2011 pape
    corecore