518 research outputs found

    Sphere packing bounds in the Grassmann and Stiefel manifolds

    Full text link
    Applying the Riemann geometric machinery of volume estimates in terms of curvature, bounds for the minimal distance of packings/codes in the Grassmann and Stiefel manifolds will be derived and analyzed. In the context of space-time block codes this leads to a monotonically increasing minimal distance lower bound as a function of the block length. This advocates large block lengths for the code design.Comment: Replaced with final version, 11 page

    Space Frequency Codes from Spherical Codes

    Full text link
    A new design method for high rate, fully diverse ('spherical') space frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary numbers of antennas and subcarriers. The construction exploits a differential geometric connection between spherical codes and space time codes. The former are well studied e.g. in the context of optimal sequence design in CDMA systems, while the latter serve as basic building blocks for space frequency codes. In addition a decoding algorithm with moderate complexity is presented. This is achieved by a lattice based construction of spherical codes, which permits lattice decoding algorithms and thus offers a substantial reduction of complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on Information Theor

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor

    Geometrical relations between space time block code designs and complexity reduction

    Full text link
    In this work, the geometric relation between space time block code design for the coherent channel and its non-coherent counterpart is exploited to get an analogue of the information theoretic inequality I(X;S)≤I((X,H);S)I(X;S)\le I((X,H);S) in terms of diversity. It provides a lower bound on the performance of non-coherent codes when used in coherent scenarios. This leads in turn to a code design decomposition result splitting coherent code design into two complexity reduced sub tasks. Moreover a geometrical criterion for high performance space time code design is derived.Comment: final version, 11 pages, two-colum

    A Numerical Approach for Designing Unitary Space Time Codes with Large Diversity

    Full text link
    A numerical approach to design unitary constellation for any dimension and any transmission rate under non-coherent Rayleigh flat fading channel.Comment: 32 pages, 6 figure

    Unitary space-time modulation via Cayley transform

    Get PDF
    A prevoiusly proposed method for communicating with multiple antennas over block fading channels is unitary space-time modulation (USTM). In this method, the signals transmitted from the antennas, viewed as a matrix with spatial and temporal dimensions, form a unitary matrix, i.e., one with orthonormal columns. Since channel knowledge is not required at the receiver, USTM schemes are suitable for use on wireless links where channel tracking is undesirable or infeasible, either because of rapid changes in the channel characteristics or because of limited system resources. Previous results have shown that if suitably designed, USTM schemes can achieve full channel capacity at high SNR and, moreover, that all this can be done over a single coherence interval, provided the coherence interval and number of transmit antennas are sufficiently large, which is a phenomenon referred to as autocoding. While all this is well recognized, what is not clear is how to generate good performing constellations of (nonsquare) unitary matrices that lend themselves to efficient encoding/decoding. The schemes proposed so far either exhibit poor performance, especially at high rates, or have no efficient decoding algorithms. We propose to use the Cayley transform to design USTM constellations. This work can be viewed as a generalization, to the nonsquare case, of the Cayley codes that have been proposed for differential USTM. The codes are designed based on an information-theoretic criterion and lend themselves to polynomial-time (often cubic) near-maximum-likelihood decoding using a sphere decoding algorithm. Simulations suggest that the resulting codes allow for effective high-rate data transmission in multiantenna communication systems without knowing the channel. However, our preliminary results do not show a substantial advantage over training-based schemes

    Sliced Wasserstein Generative Models

    Full text link
    In generative modeling, the Wasserstein distance (WD) has emerged as a useful metric to measure the discrepancy between generated and real data distributions. Unfortunately, it is challenging to approximate the WD of high-dimensional distributions. In contrast, the sliced Wasserstein distance (SWD) factorizes high-dimensional distributions into their multiple one-dimensional marginal distributions and is thus easier to approximate. In this paper, we introduce novel approximations of the primal and dual SWD. Instead of using a large number of random projections, as it is done by conventional SWD approximation methods, we propose to approximate SWDs with a small number of parameterized orthogonal projections in an end-to-end deep learning fashion. As concrete applications of our SWD approximations, we design two types of differentiable SWD blocks to equip modern generative frameworks---Auto-Encoders (AE) and Generative Adversarial Networks (GAN). In the experiments, we not only show the superiority of the proposed generative models on standard image synthesis benchmarks, but also demonstrate the state-of-the-art performance on challenging high resolution image and video generation in an unsupervised manner.Comment: This paper is accepted by CVPR 2019, accidentally uploaded as a new submission (arXiv:1904.05408, which has been withdrawn). The code is available at this https URL https:// github.com/musikisomorphie/swd.gi

    Building Deep Networks on Grassmann Manifolds

    Full text link
    Learning representations on Grassmann manifolds is popular in quite a few visual recognition tasks. In order to enable deep learning on Grassmann manifolds, this paper proposes a deep network architecture by generalizing the Euclidean network paradigm to Grassmann manifolds. In particular, we design full rank mapping layers to transform input Grassmannian data to more desirable ones, exploit re-orthonormalization layers to normalize the resulting matrices, study projection pooling layers to reduce the model complexity in the Grassmannian context, and devise projection mapping layers to respect Grassmannian geometry and meanwhile achieve Euclidean forms for regular output layers. To train the Grassmann networks, we exploit a stochastic gradient descent setting on manifolds of the connection weights, and study a matrix generalization of backpropagation to update the structured data. The evaluations on three visual recognition tasks show that our Grassmann networks have clear advantages over existing Grassmann learning methods, and achieve results comparable with state-of-the-art approaches.Comment: AAAI'18 pape
    • …
    corecore